K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 4 2021

Phương trình có 2 nghiệm phân biệt khi và chỉ khi:

\(\Delta'=m^2-\left(m^2-m+1\right)>0\)

\(\Leftrightarrow m-1>0\)

\(\Rightarrow m>1\)

10 tháng 4 2021

A,pt có 2 no pb

`<=>Delta>0`

`<=>4m^2-4(m^2-m+1)>0`

`<=>4(m-1)>0`

`<=>m-1>0`

`<=>m>1`

5 tháng 6 2017

đầu tiên tính pen -ta >0 r suy ra điều kiện

phần tính  \(x^3+x_2^3=1\)theo hằng đẳng thức.r bạn sẽ ra thôi. cố lên

5 tháng 6 2017

\(x_1^3+x_2^3=\left(x1+x2\right)\left(\left(x1+x2\right)^2-3xy\right)\)

Bạn thay x1.x2 và x1+x2 theo m vào là tìm đc m

~ Có thể mai sau tôi sẽ ko giàu có, ko mồm mép nhưng tôi sẽ cố gắng hết sức để có đc những thứ đó.~ 

Chung quy lại là CHÁN

20 tháng 5 2019

Trả lời: 

       Sorry, mk ms lớp 7,ko làm đc lớp 9!

20 tháng 5 2019

-Tìm \(\Delta\)để tìm điều kiện cho phương trình có 2 nghiệm

-Tìm tích \(x_1_{ }x_2=\frac{c}{a}\)để tìm đk cho 2 nghiệm khác 0

- Tìm tổng và tích 2 nghiệm theo định lí Vi-ét

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=\frac{-5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{-5}{2}\)

\(\Leftrightarrow\frac{\left(x1+x2\right)^2}{x1x2}=\frac{-1}{2}\)

Thay tích với tổng vào để tính nhé.Mình bận chỉ hướng dẫn ý chính. Có gì sai sót bỏ qua cho

28 tháng 2 2019

1, 

a) \(x^2-4x+m=0\)

\(\Delta=b^2-4ac=\left(-4\right)^2-4.1.m=16-4m\)

Để pt có nghiệm : \(\Delta\ge0\)

<=>\(16-4m\ge0\)

\(\Leftrightarrow16\ge4m\)

\(\Leftrightarrow m\le4\)

21 tháng 3 2017

a) ( a = 1; b = -2(m+3); c = m^2 + 3 )

   \(\Delta=b^2-4ac\)

      \(=\left[-2\left(m+3\right)\right]^2-4.1.\left(m^2+3\right)\)

      \(=4\left(m^2+6m+9\right)-4m^2-12\)

      \(=4m^2+24m+36-4m^2-12\)

      \(=24m-24\)

Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow24m-24>0\Leftrightarrow m>1\)

b) 

* Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2\left(m+3\right)\\P=x_1x_2=\frac{c}{a}=m^2+3\end{cases}}\)

Ta có: \(x_1^2+x_2^2\)

        \(=S^2-2P\)

        \(=\left[2\left(m+3\right)\right]^2-2.\left(m^2+3\right)\)

         \(=4\left(m^2+6m+9\right)-2m^2-6\)

         \(=4m^2+24m+36-2m^2-6\)

          \(=2m^2+24m+30\)

\(\frac{1}{x_1}+\frac{1}{x_2}\)

 \(=\frac{x_1+x_2}{x_1x_2}\)

 \(=\frac{S}{P}\)

 \(=\frac{2\left(m+3\right)}{m^2+3}\)

  \(=\frac{2m+6}{m^2+3}\)

5 tháng 6 2018

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0

Nếu x-5=0 suy ra x=5

Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0

Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0

Suy ra x=1 hoặc x=6.

4 tháng 7 2020

bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)

\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)

\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)

thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)

\(\left(++\right)< =>x-5=0< =>x=5\)

Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)