Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x+2y=5m-1\\-2x+y=2\end{matrix}\right.< =>\left\{{}\begin{matrix}2x+4y=10m-2\\-2x+y=2\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}5y=10m\\-2x+y=2\end{matrix}\right.< =>\left\{{}\begin{matrix}y=2m\\x=m-1\end{matrix}\right.\)
=>\(\sqrt{x}+\sqrt{y}=\sqrt{2}\left(1\right)\)
=>\(\sqrt{m-1}+\sqrt{2m}=\sqrt{2}\) (\(m\ge1\))
\(< =>\left(\sqrt{m-1}\right)^2=|\left(\sqrt{2}-\sqrt{2m}\right)^2|\)
<=>\(m-1=\left[\sqrt{2}.\left(1-\sqrt{m}\right)\right]^2< =>m-1=|2.\left(1-\sqrt{m}\right)^2|\)
<=>\(m-1=|2\left(1-2\sqrt{m}+m\right)|=\left|2-4\sqrt{m}+2m\right|\)
với \(\left|2-4\sqrt{m}+2m\right|=2-4\sqrt{m}+2m< =>m\le1\)
ta có pt:
<=>\(m-1-2+4\sqrt{m}-2m=0\)
\(< =>-m+4\sqrt{m}-3=0< =>-\left(m-4\sqrt{m}+3\right)=0\)
<=>\(m-4\sqrt{m}+3=0< =>\left(\sqrt{m}-3\right)\left(\sqrt{m}-1\right)=0\)
<=>\(\left[{}\begin{matrix}\sqrt{m}-3=0\\\sqrt{m}-1=0\end{matrix}\right.< =>\left[{}\begin{matrix}m=9\left(loai\right)\\m=1\left(TM\right)\end{matrix}\right.\)
nếu \(|2-4\sqrt{m}+2m|=-2+4\sqrt{m}-2m< =>m\ge1\)
=>\(-2+4\sqrt{m}-2m=m-1< =>3m-4\sqrt{m}+1=0\)
<=>\(3\left(m-2.\dfrac{2}{3}\sqrt{m}+\dfrac{1}{3}\right)=3\left(m-2.\dfrac{2}{3}\sqrt{m}+\dfrac{4}{9}-\dfrac{4}{9}+\dfrac{1}{3}\right)=0\)
<=>\(\left(\sqrt{m}-1\right)\left(\sqrt{m}-\dfrac{1}{3}\right)=0\)=>\(\left[{}\begin{matrix}\sqrt{m}-1=0\\\sqrt{m}-\dfrac{1}{3}=0\end{matrix}\right.< =>\left\{{}\begin{matrix}m=1\left(TM\right)\\m=\dfrac{1}{3}\left(loai\right)\end{matrix}\right.\)
vậy m=1 thì pt đã cho có 2 nghiệm (x,y) thỏa mãn
\(\sqrt{x}+\sqrt{y}=\sqrt{2}\)
ĐKXĐ : \(0\le x,y\le1\)
Ta có :
\(\sqrt{x}+\sqrt{1-y}=m+1;\sqrt{y}+\sqrt{1-x}=m+1\\ \Rightarrow\sqrt{x}+\sqrt{1-y}=\sqrt{y}+\sqrt{1-x}\Rightarrow\sqrt{x}-\sqrt{y}=\sqrt{1-x}-\sqrt{1-y}\)
\(TH1:\ 1\ge x>y\ge0\Rightarrow\sqrt{x}>\sqrt{y};\sqrt{1-x}< \sqrt{1-y}\\ \Rightarrow\sqrt{x}-\sqrt{y}>0;\sqrt{1-x}-\sqrt{1-y}< 0\\ \Rightarrow\sqrt{x}-\sqrt{y}>\sqrt{1-x}-\sqrt{1-y}\left(VL\right)\)
\(TH2:\ 1\ge y>x\ge0. Tương\ tự:vôlý\)
TH3: x=y. Khi đó hệ phương trình trở thành
\(\sqrt{x}+\sqrt{1-x}=m+1\)
Áp dụng bất đẳng thức \(\sqrt{A+B}\le\sqrt{A}+\sqrt{B}\le\sqrt{2\left(A+B\right)}\) ta có:
\(1\le m+1\le\sqrt{2}\Leftrightarrow0\le m\le\sqrt{2}-1\)
2)
\(A=\dfrac{5\sqrt{a}-3}{\sqrt{a}-2}+\dfrac{3\sqrt{a}+1}{\sqrt{a}+2}-\dfrac{a^2+2\sqrt{a}+8}{a-4}\)
\(=\dfrac{\left(5\sqrt{a}-3\right)\left(\sqrt{a}+2\right)+\left(3\sqrt{a}+1\right)\left(\sqrt{a}-2\right)-a^2-2\sqrt{a}-8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{5a+10\sqrt{a}-3\sqrt{a}-6+3a-6\sqrt{a}+\sqrt{a}-2-a^2-2\sqrt{a}-8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{-a^2+8a-16}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}=\dfrac{-\left(a-4\right)^2}{a-4}=4-a\)
1: Ta có: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=5m+1\\x+y=3m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+1}{4}\\y=3m+2-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+1}{4}\\y=\dfrac{12m+8-5m-1}{4}=\dfrac{7m+7}{4}\end{matrix}\right.\)
Ta có: \(x^2+2y^2=9\)
\(\Leftrightarrow\left(\dfrac{5m+1}{4}\right)^2+2\cdot\left(\dfrac{7m+7}{4}\right)^2=9\)
\(\Leftrightarrow\dfrac{25m^2+10m+1}{16}+\dfrac{2\cdot\left(49m^2+98m+49\right)}{16}=9\)
\(\Leftrightarrow25m^2+10m+1+98m^2+196m+98-144=0\)
\(\Leftrightarrow123m^2+206m-45=0\)
Đến đây bạn tự làm nhé, chỉ cần giải phương trình bậc hai bằng delta thôi
1) Ta có: \(\left\{{}\begin{matrix}3\sqrt{x}-\sqrt{y}=5\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9\sqrt{x}-3\sqrt{y}=15\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}11\sqrt{x}=33\\3\sqrt{x}-\sqrt{y}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=3\\\sqrt{y}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)
2) Ta có: \(\left\{{}\begin{matrix}\sqrt{x+3}-2\sqrt{y+1}=2\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{x+3}+4\sqrt{y+1}=-4\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{y+1}=0\\\sqrt{x+3}-2\sqrt{y+1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y+1}=0\\\sqrt{x+3}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+1=0\\x+3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
4. Đk: \(x,y\ge0\)
\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}=1\\\sqrt{y}+\sqrt{x+1}=1\end{matrix}\right.\left(1\right)\)
Ta có: \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}\ge0+1=1\\\sqrt{y}+\sqrt{x+1}\ge0+1=1\end{matrix}\right.\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=0,\sqrt{x+1}=1\\\sqrt{y}=0,\sqrt{y+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)<tmđk>
Vậy hệ pt có nghiệm \(\left(x,y\right)=\left(0;0\right)\)
a: Khi m=căn 2 thì hệ sẽ là:
2x-y=căn 2+1 và x+y*căn 2=2
=>\(\left\{{}\begin{matrix}2x-y=\sqrt{2}+1\\2x+2y\sqrt{2}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y-2y\sqrt{2}=\sqrt{2}-3\\2x-y=\sqrt{2}+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-1+\sqrt{2}\\2x=\sqrt{2}+1+\sqrt{2}-1=2\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=\sqrt{2}-1\end{matrix}\right.\)
b: Để hệ có nghiệm thì 2/1<>-1/m
=>-1/m<>2
=>m<>-1/2
Làm mẫu hai câu a, b thôi nha.
a, \(\left\{{}\begin{matrix}x-\sqrt{3}y=0\\\sqrt{3}x+2y=1+\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{3}y\\\sqrt{3}.\sqrt{3}y+2y=1+\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{3}y\\5y=1+\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\sqrt{3}+3}{5}\\y=\dfrac{1+\sqrt{3}}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\approx0,95\\y\approx0,55\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{5}y=1\\x+\sqrt{5}y=\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2}\left(\sqrt{2}-\sqrt{5}y\right)-\sqrt{5}y=1\\x=\sqrt{2}-\sqrt{5}y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2-\sqrt{5}\left(\sqrt{2}+1\right)y=1\\x=\sqrt{2}-\sqrt{5}y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{\sqrt{2}-1}{\sqrt{5}}\\x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\approx0,19\\x=1\end{matrix}\right.\)
a) \(\left\{{}\begin{matrix}x-\sqrt{3}y=0\\\sqrt{3}x+2y=1+\sqrt{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}x-3y=0\\\sqrt{3}x+2y=1+\sqrt{3}\end{matrix}\right.\)
Lấy phương trình dưới trừ phương trình trên thu được: \(5y=1+\sqrt{3}\Rightarrow y=\dfrac{1+\sqrt{3}}{5}\Rightarrow x=\sqrt{3}y=\dfrac{3+\sqrt{3}}{5}\)
b) Cộng hai phương trình lại với nhau thu được:
\(\left(\sqrt{2}+1\right)x=\sqrt{2}+1\Leftrightarrow x=1\Rightarrow y=\dfrac{\sqrt{2}-1}{\sqrt{5}}\)
c) \(\left\{{}\begin{matrix}\sqrt{2}x+\sqrt{5}y=2\\x+\sqrt{5}y=2\end{matrix}\right.\)
Lấy phương trình trên trừ phương trình dưới:
\(\left(\sqrt{2}-1\right)x=0\Leftrightarrow x=0\Rightarrow y=\dfrac{2-x}{\sqrt{5}}=\dfrac{2}{\sqrt{5}}\)
d) Hướng dẫn. Nhân phương trình đầu với \(\sqrt{2}\) rồi lấy phương trình thu được trừ phương trình dưới.
2) Ta có: \(\left\{{}\begin{matrix}\sqrt{3x-1}-\sqrt{2y+1}=1\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{3x-1}-2\sqrt{2y+1}=2\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-5\sqrt{2y+1}=-10\\\sqrt{3x-1}-\sqrt{2y+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2y+1}=2\\\sqrt{3x-1}-2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y+1=4\\3x-1=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=3\\3x=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{2}\\x=\dfrac{10}{3}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{10}{3}\\y=\dfrac{3}{2}\end{matrix}\right.\)
3) Ta có: \(\left\{{}\begin{matrix}\sqrt{x-2}+\sqrt{y-3}=3\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-2}+2\sqrt{y-3}=6\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{y-3}=10\\\sqrt{x-2}+\sqrt{y-3}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y-3}=2\\\sqrt{x-2}+2=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-3=4\\x-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=7\\x=3\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)