K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2016

\(8f\left(2x+3\right)=8x^3+36x^2+54x+27-3\left(4x^2+12x+9\right)-25\left(2x+3\right)+115=\left(2x+3\right)^3-3\left(2x+3\right)^2-25\left(2x+3\right)+115\)
\(\Rightarrow f\left(x\right)=\frac{x^3-3x^2-25x+115}{8}\)
ĐẾn đây ai làm tiếp hộ vs 

16 tháng 10 2016

Ta có: \(8.f\left(2x+3\right)=8x^3+24x^2-32x+40\)
                        \(=\left(2x+3\right)^3-3\left(2x+3\right)-25\left(2x+3\right)+115\)
Đặt \(2x+3=X\)ta có: \(8f\left(X\right)=X^3-3X-25X+115\)
   Vậy công thức của hàm f(x ) là: \(f\left(x\right)=\frac{x^3-3x^2-25x+115}{8}\).
Ta có: 
 \(-f\left(\sqrt[3]{2013}\right)=-\frac{\left(\sqrt[3]{2013}\right)^3-3.\left(\sqrt[3]{2013}\right)^2-25\sqrt[3]{2013}+115}{8}\).
Các bạn làm tiếp và kiểm tra lại phần tính toán giúp mình nhé !

21 tháng 10 2023

a: \(f\left(x\right)=\sqrt{x^2-6x+9}=\sqrt{\left(x-3\right)^2}=\left|x-3\right|\)

\(f\left(-1\right)=\left|-1-3\right|=4\)

\(f\left(5\right)=\left|5-3\right|=\left|2\right|=2\)

b: f(x)=10

=>\(\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=-7\end{matrix}\right.\)

c: \(A=\dfrac{f\left(x\right)}{x^2-9}=\dfrac{\left|x-3\right|}{\left(x-3\right)\left(x+3\right)}\)

TH1: x<3 và x<>-3

=>\(A=\dfrac{-\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{-1}{x+3}\)

TH2: x>3

\(A=\dfrac{\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{1}{x+3}\)

AH
Akai Haruma
Giáo viên
22 tháng 9 2021

Lời giải:

Vì $2>0$ nên $f(x)=2x-1$ là hàm đồng biến trên $R$
$\sqrt{3}-2-(\sqrt{5}-3)=1+\sqrt{3}-\sqrt{5}=1-\frac{2}{\sqrt{3}+\sqrt{5}}> 1-\frac{2}{1+1}=0$

$\Rightarrow \sqrt{3}-2> \sqrt{5}-3$

Vì hàm đồng biến nên $f(\sqrt{3}-2)> f(\sqrt{5}-3)$

AH
Akai Haruma
Giáo viên
7 tháng 10 2023

Lời giải:
a. Hệ số 2>0 nên hàm đồng biến 

b. Hệ số $1-\sqrt{2}<0$ nên hàm nghịch biến 

c. Hệ số $-5<0$ nên hàm nghịch biến 

d. Hệ số $1+m^2>0$ với mọi $m\in\mathbb{R}$ nên hàm đồng biến

e. Hệ số $\sqrt{3}-1>0$ nên hàm đồng biến 

f. Hệ số $2+m^2>0$ với mọi $m\in\mathbb{R}$ nên hàm đồng biến.

17 tháng 11 2019

bi dien

17 tháng 11 2019

Sao điên.