\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt{2x+7}-\sqrt{x+3}-5}{x-1}\L...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 4 2020

Bạn viết lại đề được ko? Ko hiểu \(\frac{x'+x}{x}\) với \(x\ne0\) là gì

Các câu dưới cũng có kí hiệu này, chắc bạn viết nhầm sang kí hiệu nào đó, nó cũng ko phải kí hiệu đạo hàm

24 tháng 12 2023

\(\lim\limits_{x\rightarrow1^-}x^2-x+3=1^2-1+3=3\)

\(\lim\limits_{x\rightarrow1^+}\dfrac{x+m}{x}=\dfrac{1+m}{1}=m+1\)

Để tồn tại \(\lim\limits_{x\rightarrow1}f\left(x\right)\) thì \(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)\)

\(\Leftrightarrow m+1=3\Leftrightarrow m=2\)

Vậy ...

24 tháng 12 2023

\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)\Leftrightarrow\lim\limits_{x\rightarrow1^+}\dfrac{x+m}{x}=\lim\limits_{x\rightarrow1^-}\left(x^2-x+3\right)\\ \Leftrightarrow m+1=3\Leftrightarrow m=2\)

11 tháng 4 2020

a) f(x) liên tục tại x0 = -2

\(\lim\limits_{x\rightarrow-2}f\left(x\right)=f\left(-2\right)=25\)

b) Có: \(\lim\limits_{x\rightarrow\frac{1}{2}}f\left(x\right)=\lim\limits_{x\rightarrow\frac{1}{2}}\frac{\left(2x-1\right)\left(2x+1\right)}{2x-1}=\lim\limits_{x\rightarrow\frac{1}{2}}\left(2x+1\right)=2\)

\(f\left(\frac{1}{2}\right)=3\)

=> \(\lim\limits_{x\rightarrow\frac{1}{2}}f\left(x\right)\ne f\left(\frac{1}{2}\right)\)

=> f(x) gián đoạn tại x0 = 1/2

c) \(\lim\limits_{x\rightarrow2-}f\left(x\right)=\lim\limits_{x\rightarrow2-}=\lim\limits_{x\rightarrow2-}\left(2x^2+x-1\right)=9\)

\(f\left(2\right)=3.2-5=1\)

\(\lim\limits_{x\rightarrow2-}f\left(x\right)\ne f\left(2\right)\)

nên f(x) gián đoạn tại x0 = 2

NV
13 tháng 3 2020

a/ \(\lim\limits_{x\rightarrow\sqrt{2}}f\left(x\right)=\lim\limits_{x\rightarrow\sqrt{2}}\frac{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}{x-\sqrt{2}}=\lim\limits_{x\rightarrow\sqrt{2}}\left(x+\sqrt{2}\right)=2\sqrt{2}\)

\(\Rightarrow\lim\limits_{x\rightarrow\sqrt{2}}f\left(x\right)=f\left(\sqrt{2}\right)\Rightarrow\) hàm số liên tục tại \(x=\sqrt{2}\)

b/ \(\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^+}\frac{x-5}{\sqrt{2x-1}-3}=\frac{\left(x-5\right)\left(\sqrt{2x-1}+3\right)}{2\left(x-5\right)}=\lim\limits_{x\rightarrow5^+}\frac{\sqrt{2x-1}+3}{2}=3\)

\(f\left(5\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=\lim\limits_{x\rightarrow5^-}\left[\left(x-5\right)^2+3\right]=5\)

\(\Rightarrow\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=f\left(5\right)\Rightarrow\) hàm số liên tục tại \(x=5\)

NV
22 tháng 2 2020

\(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+2}-\sqrt{3x-1}}{x-1}=+\infty\) (đây ko phải giới hạn dạng vô định \(\frac{0}{0}\))

\(\Rightarrow\) Không tồn tại m thỏa mãn

Có lẽ bạn ghi ko đúng đề, hàm bên trên phải là \(\frac{\sqrt{2x+2}-\sqrt{3x+1}}{x-1}\) thì giới hạn này mới là 1 số hữu hạn

22 tháng 2 2020

ừ đúng rồi là 3x+1 giúp mình câu này với