K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 8 2021

Với \(m=0\) ko thỏa mãn

Với \(m\ne0\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=-\dfrac{1}{\sqrt{m}}\)\(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=\dfrac{1}{\sqrt{m}}\)

\(\Rightarrow\) Hàm có 2 TCN khi \(\sqrt{m}\) xác định \(\Rightarrow m>0\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

Để đồ thị hàm số $y$ thế nào hả bạn?

NV
2 tháng 9 2021

\(\lim\limits_{x\rightarrow\infty}\dfrac{x^2+m}{x^2+mx}=1\Rightarrow y=1\) là 1 tiệm cận ngang

Hàm có 3 tiệm cận khi \(x^2+mx=0\) có 2 nghiệm pb và khác nghiệm của \(x^2+m=0\)

\(x^2+mx=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-m\end{matrix}\right.\) 

\(\Rightarrow m\ne0\) thay vào \(x^2+m\Rightarrow m^2+m\ne0\Rightarrow m\ne\left\{0;-1\right\}\)

Vậy \(m\ne\left\{0;-1\right\}\)

NV
7 tháng 8 2021

Hàm có tiệm cận đứng khi và chỉ khi \(x^2-mx-2m^2=0\) vô nghiệm hoặc không có nghiệm \(x=2\)

\(\Rightarrow\left[{}\begin{matrix}\Delta=m^2+8m^2< 0\\4-2m-2m^2\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-2\end{matrix}\right.\)

1 tháng 9 2019

15 tháng 12 2018

Đáp án B

Để có tiệm cận ngang thì

 

Khi đó phương trình đường tiệm cận ngang là  

 

d tiếp xúc với parabol  

27 tháng 11 2019

Chọn D

11 tháng 12 2018

5 tháng 3 2017