Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(y'< 0\)
=>\(\left(x-3\right)^3\cdot\left(x-1\right)^{22}\cdot\left(-3x-6\right)^7< 0\)
=>\(\left(x-3\right)\left(-3x-6\right)< 0\)
=>\(\left(x+2\right)\left(x-3\right)>0\)
=>\(\left[{}\begin{matrix}x>3\\x< -2\end{matrix}\right.\)
y'>0
=>\(\left(x+2\right)\left(x-3\right)< 0\)
=>\(-2< x< 3\)
y'=0
=>\(\left[{}\begin{matrix}x-3=0\\x-1=0\\-3x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)
Ta có bảng xét dấu sau:
x | \(-\infty\) -2 1 3 +\(\infty\) |
y' | - 0 + 0 + 0 - |
Vậy: Hàm số đồng biến trên các khoảng \(\left(-2;1\right);\left(1;3\right)\)
Hàm số nghịch biến trên các khoảng \(\left(-\infty;-2\right);\left(3;+\infty\right)\)
b: y'<0
=>\(\left(4x-3\right)^3\cdot\left(x^2-1\right)^{21}\left(3x-9\right)^7< 0\)
=>\(\left(4x-3\right)\left(3x-9\right)\left(x^2-1\right)< 0\)
=>\(\left(4x-3\right)\left(x-3\right)\left(x^2-1\right)< 0\)
TH1: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)>0\\x^2-1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>3\\x< \dfrac{3}{4}\end{matrix}\right.\\-1< x< 1\end{matrix}\right.\Leftrightarrow-1< x< \dfrac{3}{4}\)
TH2: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)< 0\\x^2-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{4}< x< 3\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow1< x< 3\)
y'>0
=>\(\left(4x-3\right)\left(x-3\right)\left(x^2-1\right)>0\)
TH1: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)>0\\x^2-1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>3\\x< \dfrac{3}{4}\end{matrix}\right.\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)< 0\\x^2-1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{4}< x< 3\\-1< x< 1\end{matrix}\right.\Leftrightarrow\dfrac{3}{4}< x< 1\)
Ta sẽ có bảng xét dấu sau đây:
x | \(-\infty\) -1 3/4 1 3 +\(\infty\) |
y' | + 0 - 0 + 0 - 0 + |
Vậy: Hàm số đồng biến trên các khoảng \(\left(-\infty;-1\right);\left(\dfrac{3}{4};1\right);\left(3;+\infty\right)\)
Hàm số nghịch biến trên các khoảng \(\left(-1;\dfrac{3}{4}\right);\left(1;3\right)\)
a: \(y=-x^3+\left(m+2\right)x^2-3x\)
=>\(y'=-3x^2+2\left(m+2\right)x-3\)
=>\(y'=-3x^2+\left(2m+4\right)\cdot x-3\)
Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)
=>\(\left\{{}\begin{matrix}\left(2m+4\right)^2-4\cdot\left(-3\right)\left(-3\right)< =0\\-3< 0\end{matrix}\right.\)
=>\(4m^2+16m+16-4\cdot9< =0\)
=>\(4m^2+16m-20< =0\)
=>\(m^2+4m-5< =0\)
=>\(\left(m+5\right)\left(m-1\right)< =0\)
TH1: \(\left\{{}\begin{matrix}m+5>=0\\m-1< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>=-5\\m< =1\end{matrix}\right.\)
=>-5<=m<=1
TH2: \(\left\{{}\begin{matrix}m+5< =0\\m-1>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>=1\\m< =-5\end{matrix}\right.\)
=>\(m\in\varnothing\)
b: \(y=x^3-3x^2+\left(1-m\right)x\)
=>\(y'=3x^2-3\cdot2x+1-m\)
=>\(y'=3x^2-6x+1-m\)
Để hàm số đồng biến trên R thì \(y'>=0\forall x\)
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3>0\\\left(-6\right)^2-4\cdot3\left(1-m\right)>=0\end{matrix}\right.\)
=>\(36-12\left(1-m\right)>=0\)
=>\(36-12+12m>=0\)
=>12m+24>=0
=>m+2>=0
=>m>=-2
a: \(y=-x^3-3x^2+\left(5-m\right)x\)
=>\(y'=-3x^2-3\cdot2x+5-m\)
=>\(y'=-3x^2-6x+5-m\)
Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(-6\right)^2-4\cdot\left(-3\right)\left(5-m\right)< =0\\-3< 0\end{matrix}\right.\)
=>\(36+12\left(5-m\right)< =0\)
=>\(36+60-12m< =0\)
=>\(-12m+96< =0\)
=>-12m<=-96
=>m>=8
b: \(y=x^3+\left(2m-2\right)\cdot x^2+mx\)
=>\(y'=3x^2+2\left(2m-2\right)\cdot x+m\)
=>\(y'=3x^2+\left(4m-4\right)x+m\)
Để hàm số đồng biến trên R thì y'>=0 với mọi x
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3>0\\\left(4m-4\right)^2-4\cdot3\cdot m< =0\end{matrix}\right.\)
=>\(16m^2-32m+16-12m< =0\)
=>\(16m^2-44m+16< =0\)
=>\(4m^2-11m+4< =0\)
=>\(\dfrac{11-\sqrt{57}}{8}< =m< =\dfrac{11+\sqrt{57}}{8}\)
1: TXĐ: D=R\{3}
\(y=\dfrac{x^2-6x+10}{x-3}\)
=>\(y'=\dfrac{\left(x^2-6x+10\right)'\left(x-3\right)-\left(x^2-6x+10\right)\left(x-3\right)'}{\left(x-3\right)^2}\)
=>\(y'=\dfrac{\left(2x-6\right)\left(x-3\right)-\left(x^2-6x+10\right)}{\left(x-3\right)^2}\)
=>\(y'=\dfrac{2x^2-12x+18-x^2+6x-10}{\left(x-3\right)^2}\)
=>\(y'=\dfrac{x^2-6x+8}{\left(x-3\right)^2}\)
Đặt y'<=0
=>\(\dfrac{x^2-6x+8}{\left(x-3\right)^2}< =0\)
=>\(x^2-6x+8< =0\)
=>(x-2)(x-4)<=0
=>2<=x<=4
Vậy: Khoảng đồng biến là [2;3) và (3;4]
a: Đặt y'>0
=>(2x-3)(x^2-1)>0
Th1: 2x-3>0 và x^2-1>0
=>x>3/2 và (x>1 hoặc x<-1)
=>x>3/2
TH2: 2x-3<0 và x^2-1<0
=>x<3/2 và -1<x<1
=>-1<x<1
=>Hàm số đồng biến khi x>3/2 hoặc -1<x<1
Đặt y'<0
=>(2x-3)(x^2-1)<0
TH1: 2x-3>0 và x^2-1<0
=>x>3/2 và -1<x<1
=>Loại
TH2: 2x-3<0 và x^2-1>0
=>x<3/2 và (x>1 hoặc x<-1)
=>1<x<3/2 hoặc x<-1
=>Hàm số nghịch biến khi 1<x<3/2 hoặc x<-1
b: Đặt y'>0
=>(x+2)(2x+5)<0
=>-5/2<x<-2
=>hàm số đồng biến khi -5/2<x<-2
Đặt y'<0
=>(x+2)(2x+5)>0
=>x>-2 hoặc x<-5/2
=>Hàm số nghịch biến khi x>-2 hoặc x<-5/2
a: TXĐ: D=R\{3}
\(y=\dfrac{2m-x}{x-3}\)
=>\(y'=\dfrac{\left(2m-x\right)'\left(x-3\right)-\left(2m-x\right)\left(x-3\right)'}{\left(x-3\right)^2}\)
\(=\dfrac{-\left(x-3\right)-2m+x}{\left(x-3\right)^2}\)
\(=\dfrac{3-2m}{\left(x-3\right)^2}\)
Để hàm số đồng biến trên từng khoảng xác định thì y'>0 với mọi x thỏa mãn ĐKXĐ
=>\(\dfrac{3-2m}{\left(x-3\right)^2}>0\)
=>3-2m>0
=>2m<3
=>\(m< \dfrac{3}{2}\)
b: TXĐ: D=R\{-m}
\(y=\dfrac{x+3}{x+m}\)
=>\(y'=\dfrac{\left(x+3\right)'\left(x+m\right)-\left(x+3\right)\left(x+m\right)'}{\left(x+m\right)^2}\)
\(=\dfrac{x+m-x-3}{\left(x+m\right)^2}=\dfrac{m-3}{\left(x+m\right)^2}\)
Để hàm số nghịch biến trên từng khoảng xác định thì \(y'< 0\forall x\in TXĐ\)
=>\(\dfrac{m-3}{\left(x+m\right)^2}< 0\)
=>m-3<0
=>m<3
a: \(y=\left(x^2-1\right)^2\)
=>\(y'=2\left(x^2-1\right)'\left(x^2-1\right)\)
\(=4x\left(x^2-1\right)\)
Đặt y'>0
=>\(x\left(x^2-1\right)>0\)
TH1: \(\left\{{}\begin{matrix}x>0\\x^2-1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>0\\x^2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\)
=>\(x>1\)
TH2: \(\left\{{}\begin{matrix}x< 0\\x^2-1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 0\\-1< x< 1\end{matrix}\right.\Leftrightarrow-1< x< 0\)
Đặt y'<0
=>\(x\left(x^2-1\right)< 0\)
TH1: \(\left\{{}\begin{matrix}x>0\\x^2-1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>0\\x^2< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\-1< x< 1\end{matrix}\right.\)
=>0<x<1
TH2: \(\left\{{}\begin{matrix}x< 0\\x^2-1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 0\\x^2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\)
=>x<-1
Vậy: Hàm số đồng biến trên các khoảng \(\left(1;+\infty\right);\left(-1;0\right)\)
Hàm số nghịch biến trên các khoảng (0;1) và \(\left(-\infty;-1\right)\)
b: \(y=\left(3x+4\right)^3\)
=>\(y'=3\left(3x+4\right)'\left(3x+4\right)^2\)
\(\Leftrightarrow y'=9\left(3x+4\right)^2>=0\forall x\)
=>Hàm số luôn đồng biến trên R
c: \(y=\left(x+3\right)^2\left(x-1\right)\)
=>\(y=\left(x^2+6x+9\right)\left(x-1\right)\)
=>\(y'=\left(x^2+6x+9\right)'\left(x-1\right)+\left(x^2+6x+9\right)\left(x-1\right)'\)
=>\(y'=\left(2x+6\right)\left(x-1\right)+x^2+6x+9\)
=>\(y'=2x^2-2x+6x-6+x^2+6x+9\)
=>\(y'=3x^2-2x+3\)
\(\Leftrightarrow y'=3\left(x^2-\dfrac{2}{3}x+1\right)\)
=>\(y'=3\left(x^2-2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{8}{9}\right)\)
=>\(y'=3\left(x-\dfrac{1}{3}\right)^2+\dfrac{8}{3}>=\dfrac{8}{3}>0\forall x\)
=>Hàm số luôn đồng biến trên R
d: \(y=\left(2x+2\right)\left(x^3-1\right)\)
=>\(y'=\left(2x+2\right)'\left(x^3-1\right)+\left(2x+2\right)\left(x^3-1\right)'\)
\(=2\left(x^3-1\right)+3x^2\left(2x+2\right)\)
\(=2x^3-2+6x^3+6x^2\)
\(=8x^3+6x^2-2\)
Đặt y'>0
=>\(8x^3+6x^2-2>0\)
=>\(x>0,46\)
Đặt y'<0
=>\(8x^3+6x^2-2< 0\)
=>\(x< 0,46\)
Vậy: Hàm số đồng biến trên khoảng tầm \(\left(0,46;+\infty\right)\)
Hàm số nghịch biến trên khoảng tầm \(\left(-\infty;0,46\right)\)
a: y'=3x^2-3*2x=3x^2-6x=3x(x-2)
y'>0 khi x(x-2)>0
=>x>2 hoặc x<0
=>Khi x>2 hoặc x<0 thì hàm số đồng biến
y'<0 khi x(x-2)<0
=>0<x<2
=>Khi 0<x<2 thì hàm số nghịch biến
b: y'=-3x^2+3
y'>0 khi -3x^2+3>0
=>-3x^2>-3
=>x^2<1
=>-1<x<1
Khi -1<x<1 thì hàm số đồng biến
y'<0 khi x^2>1
=>x>1 hoặc x<-1
Vậy: Khi x>1 hoặc x<-1 thì hàm số nghịch biến