Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: 2|x + 2| \(\ge\)0 \(\forall\)x
=> 2|x + 2| + 15 \(\ge\)15 \(\forall\)x
Hay A \(\ge\)15 \(\forall\)x
Dấu "=" xảy ra <=>x + 2 = 0 <=> x = -2
Vậy Min A = 15 tại x = -2
b) Ta có: 2(x + 5)4 \(\ge\)0 \(\forall\)x
3|x + y + 2| \(\ge\)0 \(\forall\)x;y
=> 20 - 2(x + 5)4 - 3|x + y + 2| \(\le\)20 \(\forall\)x;y
Hay B \(\le\)20 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+5=0\\x+y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-x\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-\left(-5\right)=3\end{cases}}\)
Vậy Max B = 20 tại x = -5 và y = 3
\(\dfrac{x}{6}=\dfrac{7}{4}\Rightarrow x=\dfrac{6\cdot7}{4}=\dfrac{21}{2}\\ \dfrac{3}{x}=\dfrac{21}{17}\Rightarrow x=\dfrac{3\cdot17}{21}=\dfrac{17}{7}\)
b: Ta có: \(47\dfrac{1}{9}:\left(-\dfrac{5}{2}\right)-27\dfrac{1}{9}:\left(-\dfrac{5}{2}\right)\)
\(=\left(47+\dfrac{1}{9}\right)\cdot\dfrac{-2}{5}-\left(27+\dfrac{1}{9}\right)\cdot\dfrac{-2}{5}\)
\(=20\cdot\dfrac{-2}{5}\)
=-8
\(A=\dfrac{3}{2\cdot2}=\dfrac{3}{4}\\ A=\dfrac{3}{2\cdot5}=\dfrac{3}{10}\\ A=\dfrac{3}{2\cdot3}=\dfrac{1}{2}\)
Gọi số hoa của 3 bạn lần lượt là x, y , z
Vì x,y,z TLT vớ 4,5,6
=> x/4=y/5=z/6=k
Theo t/c dãy tỉ số bằng nhau :
k= x+y+z/ 4+5+6 = 75/15=5
=> x= 5.4=20
y= 5. 5 = 25
z= 5.6=30
Vậy ..
Gọi số hoa 3 bạn hái được lần lượt là a,b,c \(\left(a,b,c\inℕ^∗\right)\)
Theo đề bài ra,ta có :
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có :
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{a+b+c}{4+5+6}=\frac{75}{15}=6\)
\(\Rightarrow\hept{\begin{cases}a=6.4=24\\b=6.5=30\\c=6.6=36\end{cases}}\)
Vậy ....
Cho bạn biết nhé : bạn thiếu điều kiện òi
Úi chít, mik quên.
Cho hàm số: y=f(x)=ax