Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng dãy tỉ số bằng nhau:
b.
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=-5.\left(-1\right)=5\end{matrix}\right.\)
d.
\(\dfrac{4}{x}=\dfrac{7}{y}\Rightarrow\dfrac{y}{7}=\dfrac{x}{4}=\dfrac{y-x}{7-4}=\dfrac{-12}{3}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.\left(-4\right)=-16\\y=7.\left(-4\right)=-28\end{matrix}\right.\)
\(\dfrac{x}{2}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{20}=\dfrac{z}{12}\)
Áp dụng t/c của dãy số bằng nhau, ta có: \(\dfrac{x-y+z}{10-20+12}=\dfrac{4}{2}=2\)
\(\dfrac{x}{10}=2\Rightarrow x=20\)
\(\dfrac{y}{20}=2\Rightarrow y=40\)
\(\dfrac{z}{12}=2\Rightarrow z=24\)
x/10=y/20=z/12
x-y+z/=10-20+12=4/2=2
x=2.10=20
y=2.20=40
z=2.12=24
Bài 1:
a) Vì x và y là 2 đại lượng tỉ lệ thuận
\(\Rightarrow\)Gọi hệ số tỉ lệ giữa hai đại lượng là k
\(\Rightarrow\)y=kx
\(\Rightarrow\)2k=4
\(\Rightarrow\)k=2
b+c) Ta có:
Hệ số tỉ lệ k=2
\(\Rightarrow\)y=2x
\(\Rightarrow\)x=1/2y
(Sửa đề)
d) Ta có:
x=5 \(\Leftrightarrow\)y=2.5=10
x=-2\(\Leftrightarrow\)y=2(-2)=-4
Bài 2:
Vì y=f(x)=3x
\(\Rightarrow\)f(13)=3.13=39
\(\Rightarrow\)f(1/2)=3.1/2=3/2
\(\Rightarrow\)f(-5)=3(-5)=-15
1. a) Vì x và y là hai đại lượng tỉ lệ thuận
=> y = k.x (k thuộc N*)
Khi x= 2 thì y= 4
=> 4 = k.2 => k = 4 : 2 = 2
Vậy hệ số tỉ lệ của y đối với x là 2
b) Vì y tỉ lệ thuận với x theo hệ số tỉ lệ 2
=> y = 2x
c) y = 2x => x = 1/2.y
d) x = 5 => y = 2.5 = 10
x = -2 => y = 2 . (-2) = -4
2. f(13) = 3 . 13 = 39
f(1/2) = 3 . 1/2 = 3/2
f(-5) = 3 . (-5) = -15
7x = 3y
=> x/3 = y/7
áp dụng tc của dãy tỉ số = nhau ta có :
x/3 = y/7 = (x-y)/(3-7) mà x - y = 16
=> x/3 = y/7 = -4
=> x = -12 và y = -28
7.x=3.y
\(\Leftrightarrow\)x/3=y/7
Áp dụng...........:
x/3=y/7=x-y/3-7=\(-\frac{16}{4}\) =-4
x/3=-4
x=-12
y/7=-4
y=-28
Vậy...
\(\frac{x}{2}=\frac{y}{7}\Leftrightarrow y=\frac{7}{2}x\)
\(xy=x.\frac{7}{2}x=\frac{7}{2}x^2=1400\Leftrightarrow x^2=400\)
\(\Leftrightarrow\orbr{\begin{cases}x=20\Rightarrow y=70\\x=-20\Rightarrow y=-70\end{cases}}\).
ta có x.y=1400
=>y=\(\frac{1400}{x}\)(1)
ta có :\(\frac{x}{2}=\frac{y}{7}\)
=>7x=2y(2)
thay (1) vào (2), ta được:
7x=2.\(\frac{1400}{x}\)
=>7x-\(\frac{2800}{x}\)=0
=>\(\frac{7x^2-2800}{x}=0\)(x\(\ne0\))
=>7x2-2800=0
=>7x2=2800
=>x2=400
=>x=\(\pm20\)
với x=20 =>y=\(\frac{1400}{20}=70\)
với x=-20=>y=\(\frac{1400}{-20}=-70\)
vậy ...
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{t}{1}=\dfrac{x-y+z-t}{15-7+3-1}=\dfrac{10}{10}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=15\\y=7\\z=3\\t=1\end{matrix}\right.\)
a) x : 2 = y : (-5)
⇒ x/2 = y/(-5)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/2 = y/(-5) = (x - y)/(2 + 5) = 14/7 =
x/2 = 2 ⇒ x = 2.2 = 4
y/(-5) = 2 ⇒ y = 2.(-5) = -10
Vậy x = 4; y = -10
b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/2 = y/5 = z/6 = (x - y + z)/(2 - 5 + 6) = 24/3 = 8
x/2 = 8 ⇒ x = 8.2 = 16
y/5 = 9 ⇒ y = 8.5 = 40
z/6 = 8 ⇒ z = 8.6 = 48
Vậy x = 16; y = 40; z = 48
c) 2x = 3y = 6z
⇒ x/(1/2) = y/(1/3) = z/(1/6)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/(1/2) = y/(1/3) = z/(1/6) = (x + y - z)/(1/2 + 1/3 - 1/6) = 8/(2/3) = 12
2x = 12 ⇒ x = 12 : 2 = 6
3y = 12 ⇒ y = 12 : 3 = 4
6z = 12 ⇒ z = 12 : 6 = 2
Vậy x = 6; y = 4; z = 2
d) x/3 = y/2 = z/(-3)
⇒ 2x/6 = 3y/6 = 4z/(-12)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
2x/6 = 3y/6 = 4z/(-12) = (2x - 3y + 4z)/(6 - 6 - 12) = 48/(-12) = -4
x/3 = -4 ⇒ x = -4.3 = -12
y/2 = -4 ⇒ y = -4.2 = -8
z/(-3) = -4 ⇒ z = -4.(-3) = 12
Vậy x = -12; y = -8; z = 12
e) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/5 = y/6 = z/7 = (x - y)/(5 - 6) = 36/(-1) = -36
x/5 = -36 ⇒ x = -36.5 = -180
y/6 = -36 ⇒ y = -36.6 = -216
z/7 = -36 ⇒ z = -36.7 = -252
Vậy x = -180; y = -216; z = -252
f) x/12 = y/13
⇒ 3x/36 = 2y/26
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
3x/36 = 2y/26 = (3x + 2y)/(36 + 26) = 52/62 = 26/31
x/12 = 26/31 ⇒ x = 26/31 . 12 = 312/31
y/13 = 26/31 ⇒ y = 26/31 . 13 = 338/31
z/15 = 26/31 ⇒ z = 26/31 . 15 = 390/31
Vậy x = 312/31; y = 338/31; z = 390/31
Lời giải:
Đặt $\frac{x}{2}=\frac{y}{5}=k$
$\Rightarrow x=2k; y=5k$. Khi đó:
$xy=2k.5k=10$
$10k^2=10$
$k^2=1$
$\Rightarrow k=\pm 1$
Nếu $k=1$ thì $x=2k=2; y=5k=5$
Nếu $k=-1$ thì $x=2k=-2; y=5k=-5$
\(\dfrac{x}{7}=\dfrac{y}{13}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
⇒\(\left\{{}\begin{matrix}x=2.7=14\\y=2.13=26\end{matrix}\right.\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
=> \(\dfrac{x}{7}=\dfrac{y}{13}=2\)
=> \(\left\{{}\begin{matrix}x=14\\y=26\end{matrix}\right.\)