Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Gọi hai số âần tìm là a và b.Giả sử a > b. Ta có :
ƯCLN(a ; b) = 12 \(\Rightarrow\) a = 12m và b = 12n (m,n \(\in\) N và m > n)
Do đó a - b = 12m - 12n = 12.(m - n) = 48
\(\Rightarrow\) m - n = 4. Vì m > n nên m = n + 4
Vậy có vô số cặp số a,b thỏa mãn đề bài.
a) Gọi hai số cần tìm là a và b. Giả sử a > b. Ta có :
ƯCLN(a ; b) = 28 \(\Rightarrow\) a = 28m và b = 28n (m,n \(\in\) N* và m > n)
Do đó a - b = 28m - 28n = 28.(m - n)
Mà 300 < b < a < 400 nên 11 < n < m < 14
\(\Rightarrow\) n = 12 và m = 13.
Do đó a = 28 . 13 = 364
b = 28 . 12 = 336
Vậy hai số đó là 364 và 336
Lời giải:
Gọi hai số cần tìm là $a$ và $b$. ĐK: $a,b\in\mathbb{N}, a>b$
Vì $ƯCLN(a,b)=28$ nên đặt $a=28x, b=28y$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố
cùng nhau.
Theo bài ra ta có:
$a-b=84$
$\Rightarrow 28x-28y=84$
$\Rightarrow x-y=3$
Vì $300< a,b< 400\Rightarrow 300< 28x, 28y< 400\Rightarrow 10,7< x,y< 14,28$
Mà $x,y$ là số tự nhiên, $x-y=3$ nên $x=14, y=11$
$\Rightarrow a=14.28=392, b=11.28=308$
a) Đặt hai số cần tìm là \(a,b\)\(300< a\le b< 400\).
\(ƯCLN\left(a,b\right)=28\)nên đặt \(a=28m,b=28n\)khi đó \(10< m\le n< 15,\left(m,n\right)=1\).
Ta có:
\(b-a=28n-28m=28\left(n-m\right)=84\Leftrightarrow n-m=3\)
Kết hợp với điều kiện suy ra \(\hept{\begin{cases}m=11\\n=14\end{cases}}\Rightarrow\hept{\begin{cases}a=308\\b=392\end{cases}}\).
b) Tương tự a).
Gọi hai số tự nhiên thỏa mãn đề bài theo thứ tự từ bé đến lớn lần lượt là:
b ; a 300 ≤ b < a ≤ 400;
Ta có: a - b = 84 và ƯCLN(a,b) = 84
⇒ \(\left\{{}\begin{matrix}a=28\times c\\b=28\times d\end{matrix}\right.\) (c; d) = 1
28 \(\times\) c - 28 \(\times\) d = 84
28\(\times\)(c-d) = 84
c - d = 3 ⇒ d = c - 3
Mặt khác ta cũng có: 300 ≤ a ≤ 400 ⇒ 300 ≤ 28 \(\times\) c ≤ 400
⇒\(\dfrac{75}{7}\) ≤ c ≤ \(\dfrac{100}{7}\) ⇒ 10,7 ≤ c ≤ 14,2 vì c \(\in\) N nên c = 11; 12; 13
lập bảng ta có:
Theo bảng trên ta có hai cặp số tự nhiên thỏa mãn đề bài là:
(224; 308) và (280; 364)
dc