Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 4 số tự nhiên cần tìm lần lượt là a, b, c, d. Theo đề bài, ta có các điều kiện sau: 1. a + b + c + d = 2003 2. Nếu xóa bỏ chữ số hàng đơn vị của số thứ nhất ta được số thứ hai: a // 10 = b 3. Nếu xóa bỏ chữ số hàng đơn vị của số thứ hai ta được số thứ ba: b // 10 = c 4. Nếu xóa bỏ chữ số hàng đơn vị của số thứ ba ta được số thứ tư: c // 10 = d Ta sẽ giải hệ phương trình này bằng cách thử từng giá trị của a và d. Với a = 1, d = 2, ta có: 1 + b + c + 2 = 2003 => b + c = 2000 Vì b và c là số tự nhiên, nên ta thử các giá trị của b và c từ 1 đến 1999. Tuy nhiên, không có cặp giá trị nào thỏa mãn điều kiện b + c = 2000. Với a = 2, d = 3, ta có: 2 + b + c + 3 = 2003 => b + c = 1998 Tương tự, ta thử các giá trị của b và c từ 1 đến 1997. Tuy nhiên, cũng không có cặp giá trị nào thỏa mãn điều kiện b + c = 1998. Tiếp tục thử các giá trị khác cho a và d, ta sẽ tìm được cặp giá trị thỏa mãn điều kiện.
Gọi số thứ 1 là:a,bcd
Gọi số thứ 2 là:a,b(a,b nếu thêm 15 vào bên phải thì được số thứ1)
1,05=21/20;hiệu hai số là 0,015
Coi số thứ nhất la 21 phần thì số thứ hai là 20 phần
Số thứ nhất là:
0,015 x 21=0,315
Số thứ hai là:0,3
Đáp số:Số thứ nhất:0,315
Số thứ hai :0,3