K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1

Ta có: \(2a=5b\Rightarrow\dfrac{a}{5}=\dfrac{b}{2}\Rightarrow\dfrac{3a}{15}=\dfrac{4b}{8}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{3a}{15}=\dfrac{4b}{8}=\dfrac{3a+4b}{15+8}=\dfrac{46}{23}=2\)

Do đó:

\(\dfrac{a}{5}=2\Rightarrow a=5.2=10\)

\(\dfrac{b}{2}=2\Rightarrow b=2.2=4\)

Vậy a = 10, b = 4.

\(#Nulc`\)

NV
1 tháng 1

Ta có:

\(2a=5b\Rightarrow\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{3a}{15}=\dfrac{4b}{8}=\dfrac{3a+4b}{15+8}=\dfrac{46}{23}=2\)

\(\Rightarrow\left\{{}\begin{matrix}a=5\times2=10\\b=2\times2=4\end{matrix}\right.\)

Ta có 2a=3b <=> a=\(\frac{3b}{2}\) 
Lại có 3a+4b=46
Do đó 3x\(\frac{3b}{2}\) +4b=46
<=>\(\frac{9b}{2}\) +\(\frac{8b}{2}\) =46
<=>17b=46x2
<=>b=\(\frac{92}{17}\) 

=>a=3x\(\frac{92}{17}\) :2 
<=>a=\(\frac{138}{17}\)

15 tháng 12 2019

\(\text{Ta có: }2a=3b\Rightarrow a=\frac{3b}{2}\)
\(\Rightarrow3a+4b=3.\frac{3b}{2}+4b=46\)

\(\Rightarrow\frac{9}{2}b+4b=46\)

\(\Rightarrow b.\left(\frac{9}{2}+4\right)=46\)

\(\Rightarrow b.\frac{17}{2}=46\)

\(\Rightarrow b=46:\frac{17}{2}=\frac{92}{17}\)

Từ đây rồi tính  đc a

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

a) Vì \(2a=5b\) nên \(\dfrac{a}{5}=\dfrac{b}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{3a+4b}{3.5+2.4}=\dfrac{46}{23}=2\)

\( \Rightarrow a=2.5=10;\\b=2.2=4\)

Vậy \(a = 10 ; b = 4\)

b) Vì a : b : c = 2 : 4 : 5

\( \Rightarrow \dfrac{a}{2} = \dfrac{b}{4} = \dfrac{c}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\( \Rightarrow \dfrac{a}{2} = \dfrac{b}{4} = \dfrac{c}{5}= \dfrac{{a + b - c}}{{2 + 4 - 5}}= \dfrac{3}{1}=3\)

\( \Rightarrow a = 3.2=6;\\b = 3.4=12;\\c =3.5=15.\)

Vậy \(a=6;b=12;c=15\).

24 tháng 10 2021

\(2a=5b\Rightarrow\dfrac{a}{5}=\dfrac{b}{2}\)

Áp dụng TCDTSBN ta có:

\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{3a+6b}{15+12}=\dfrac{54}{27}=2\)

\(\dfrac{a}{5}=2\Rightarrow a=10\\ \dfrac{b}{2}=2\Rightarrow b=4\)

24 tháng 10 2021

\(\dfrac{a}{5}=\dfrac{b}{2}\) mà cj

3 tháng 8 2020

\(a=\frac{5}{3}b\)\(c=\frac{5}{6}b\)

\(\Rightarrow3.\frac{5}{6}b-2.\frac{5}{3}b=10\)

\(\Leftrightarrow\frac{-5}{6}b=10\)

\(\Leftrightarrow b=-12\)

b, Tương tự

3 tháng 8 2020

Bài làm:

a) \(3a=5b=6c\)

\(\Leftrightarrow\frac{a}{10}=\frac{b}{6}=\frac{c}{5}\)

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{a}{10}=\frac{b}{6}=\frac{c}{5}=\frac{3c-2a}{15-20}=\frac{10}{-5}=-2\)

\(\Rightarrow\hept{\begin{cases}a=-20\\b=-12\\c=-10\end{cases}}\)

b) Ta có: \(3a=4b\Leftrightarrow\frac{a}{4}=\frac{b}{3}\Leftrightarrow\frac{a}{20}=\frac{b}{15}\left(1\right)\)

và \(6b=5c\Leftrightarrow\frac{b}{5}=\frac{c}{6}\Leftrightarrow\frac{b}{15}=\frac{c}{18}\left(2\right)\)

Từ (1) và (2) => \(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}\)

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}=\frac{2c-3b+a}{36-45+20}=\frac{-22}{11}=-2\)

\(\Rightarrow\hept{\begin{cases}a=-40\\b=-30\\c=-36\end{cases}}\)

14 tháng 9 2020

Ta có : 2a = 3b => \(\frac{a}{3}=\frac{b}{2}\)

5b = 7c => \(\frac{b}{7}=\frac{c}{5}\)

=> \(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)

+) \(\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)

+) \(\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\)

=> \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

=> \(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có : \(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)

Từ đó suy ra a = 2.21 = 42,b = 2.14 = 28,c = 2.10 = 20

14 tháng 9 2020

Ta có:\(2a=3b\)\(\Rightarrow\frac{a}{3}=\frac{b}{2}\)\(\Rightarrow\frac{a}{21}=\frac{b}{14}\)

\(5b=7c\)\(\Rightarrow\frac{b}{7}=\frac{c}{5}\)\(\Rightarrow\frac{b}{14}=\frac{c}{10}\)

Suy ra:\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

Đặt\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=k\)

\(\Rightarrow\hept{\begin{cases}a=21k\\b=14k\\c=10k\end{cases}}\)

\(3a+5c-7b=30\)

\(\Rightarrow3.21k+5.10k-7.14k=30\)

\(\Leftrightarrow63k+50k-98k=30\)

\(\Leftrightarrow15k=30\)

\(\Leftrightarrow k=2\)

\(\Rightarrow\hept{\begin{cases}a=2.21=42\\b=2.14=28\\c=2.10=20\end{cases}}\)

Vậy\(\hept{\begin{cases}a=42\\b=28\\c=20\end{cases}}\)

Linz

13 tháng 10 2019

Ta có : 

\(2a=\frac{a}{\frac{1}{2}};3b=\frac{b}{\frac{1}{3}};5b=\frac{b}{\frac{1}{5}};7c=\frac{c}{\frac{1}{7}}\)

Lại có \(\hept{\begin{cases}\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}\\\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{7}}\end{cases}}\Rightarrow\frac{a}{\frac{3}{2}}=b=\frac{c}{\frac{5}{7}}\Leftrightarrow\frac{3a}{\frac{9}{2}}=\frac{7b}{1}=\frac{5c}{\frac{25}{7}}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{3a}{\frac{9}{2}}=\frac{7b}{1}=\frac{5c}{\frac{25}{7}}=\frac{3a-7b+5c}{\frac{9}{2}-1+\frac{25}{7}}=\frac{-30}{\frac{99}{14}}=\frac{-140}{33}\)

\(\Rightarrow\hept{\begin{cases}3a=\frac{-140}{33}\cdot\frac{9}{2}=\frac{-210}{11}\Rightarrow a=\frac{-70}{11}\\7b=\frac{-140}{33}\Rightarrow b=\frac{-20}{33}\\5c=\frac{-140}{33}\cdot\frac{25}{7}=\frac{-500}{33}\Rightarrow c=\frac{-100}{33}\end{cases}}\)

Vậy....

Chắc sai =))

21 tháng 8 2016

Ta đặt:\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Khi đó: \(\frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b\left(2k+5\right)}{b\left(3k-4\right)}=\frac{2k+5}{3k-4}\)

            \(\frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d\left(2k+5\right)}{d\left(3k-4\right)}=\frac{2k+5}{3k-4}\)

\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\left(=\frac{2k+5}{3k-4}\right)\)