K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(\left|x-3\right|\ge0\)

=> \(2\left|x-3\right|\ge0\)

Nên : \(A=9-2\left|x-3\right|\le9\)

Vậy \(A_{max}=9\) khi x = 3 

3 tháng 7 2018

\(B=\left|x-2\right|+\left|x-8\right|=\left|x-2\right|+\left|8-x\right|\ge\left|x-2+8-x\right|=6\)

Dấu "=" xảy ra khi \(\left(x-2\right)\left(8-x\right)\ge0\)

TH1: \(\hept{\begin{cases}x-2\ge0\\8-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge2\\x\le8\end{cases}\Rightarrow}2\le x\le8}\)

TH2: \(\hept{\begin{cases}x-2\le0\\8-x\le0\end{cases}\Rightarrow\hept{\begin{cases}x\le2\\x\ge8\end{cases}}\left(loại\right)}\)

Vậy Bmin = 6 khi 2 <= x <= 8

19 tháng 9 2021

a) \(5^{x-1}+5^{x-3}=650\)

\(\Rightarrow5^x\left(\frac{1}{5}+\frac{1}{125}\right)=650\)

\(\Rightarrow5^x=650:\frac{26}{125}\)

\(\Rightarrow5^x=3125\)

\(\Rightarrow5^x=5^5\)

\(\Rightarrow x=5\)

31 tháng 10 2016

Tập xác định của phương trình

Biến đổi vế trái của phương trìnhPhương trình thu được sau khi biến đổiLời giải thu được

Kết quả: Giải phương trình với tập xác định

31 tháng 10 2016

Lời giải: Giải phương trình với tập xác định

1

Tập xác định của phương trình

2

Biến đổi vế trái của phương trình

3

Phương trình thu được sau khi biến đổi

4

Lời giải thu được

 

Kết quả: Giải phương trình với tập xác định

      
11 tháng 11 2019

Đề có phải là thế này không bạn: \(\sqrt{\frac{49}{6}}< \left|x-\frac{2}{3}\right|< \frac{26}{\sqrt{81}}\) ?


1 tháng 4 2021

p/s thứ nhất là căn của 49 thôi chứ không phải căn cả p/s

 

5 tháng 12 2015

|x - 3| + (y + 4)2 = 0

Mà |x - 3| \(\ge\) 0 ; (y + 4)2 \(\ge\) 0 

Nên |x - 3| = (y + 4)2 = 0

=> x-  3 = 0 => x = 3

=> y + 4 = 0 => y = -4

x + y = 3 + (-4) = -1

10 tháng 11 2017

Mình ghi nhầm

ai giải đc 3 k nha

14 tháng 4 2021

14 tháng 4 2021

\(\left(\dfrac{3x}{4}+5\right)-\left(\dfrac{2x}{3}-4\right)-\left(\dfrac{x}{6}+1\right)=\left(\dfrac{1}{3}+4\right)-\left(\dfrac{1}{3}x-3\right)\)

\(\Leftrightarrow\dfrac{3x}{4}-\dfrac{2x}{3}-\dfrac{x}{6}+5+4-1=\dfrac{13}{3}-\dfrac{1}{3}x+9\)

\(\Leftrightarrow\dfrac{9x-8x-2x}{12}+8=\dfrac{13-x}{3}+\dfrac{27}{3}\)

\(\Leftrightarrow\dfrac{-x}{12}+\dfrac{96}{12}=\dfrac{40-x}{3}\Leftrightarrow\dfrac{96-x}{12}=\dfrac{160-4x}{12}\)

\(\Rightarrow96-160=-4x+x\Leftrightarrow-64=-3x\Leftrightarrow x=\dfrac{64}{3}\)