Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: Ta có: \(x^4-3x^3-24x+8\)
\(=x^3\left(x-3\right)-8\left(x-3\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x^2+2x+4\right)\)
Bài 1
a) 5x²y - 20xy²
= 5xy(x - 4y)
b) 1 - 8x + 16x² - y²
= (1 - 8x + 16x²) - y²
= (1 - 4x)² - y²
= (1 - 4x - y)(1 - 4x + y)
c) 4x - 4 - x²
= -(x² - 4x + 4)
= -(x - 2)²
d) x³ - 2x² + x - xy²
= x(x² - 2x + 1 - y²)
= x[(x² - 2x+ 1) - y²]
= x[(x - 1)² - y²]
= x(x - 1 - y)(x - 1 + y)
= x(x - y - 1)(x + y - 1)
e) 27 - 3x²
= 3(9 - x²)
= 3(3 - x)(3 + x)
f) 2x² + 4x + 2 - 2y²
= 2(x² + 2x + 1 - y²)
= 2[(x² + 2x + 1) - y²]
= 2[(x + 1)² - y²]
= 2(x + 1 - y)(x + 1 + y)
= 2(x - y + 1)(x + y + 1)
Bài 2:
a: \(x^2\left(x-2023\right)+x-2023=0\)
=>\(\left(x-2023\right)\left(x^2+1\right)=0\)
mà \(x^2+1>=1>0\forall x\)
nên x-2023=0
=>x=2023
b:
ĐKXĐ: x<>0
\(-x\left(x-4\right)+\left(2x^3-4x^2-9x\right):x=0\)
=>\(-x\left(x-4\right)+2x^2-4x-9=0\)
=>\(-x^2+4x+2x^2-4x-9=0\)
=>\(x^2-9=0\)
=>(x-3)(x+3)=0
=>\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
c: \(x^2+2x-3x-6=0\)
=>\(\left(x^2+2x\right)-\left(3x+6\right)=0\)
=>\(x\left(x+2\right)-3\left(x+2\right)=0\)
=>(x+2)(x-3)=0
=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
d: 3x(x-10)-2x+20=0
=>\(3x\left(x-10\right)-\left(2x-20\right)=0\)
=>\(3x\left(x-10\right)-2\left(x-10\right)=0\)
=>\(\left(x-10\right)\left(3x-2\right)=0\)
=>\(\left[{}\begin{matrix}x-10=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=10\end{matrix}\right.\)
Câu 1:
a: \(5x^2y-20xy^2\)
\(=5xy\cdot x-5xy\cdot4y\)
\(=5xy\left(x-4y\right)\)
b: \(1-8x+16x^2-y^2\)
\(=\left(16x^2-8x+1\right)-y^2\)
\(=\left(4x-1\right)^2-y^2\)
\(=\left(4x-1-y\right)\left(4x-1+y\right)\)
c: \(4x-4-x^2\)
\(=-\left(x^2-4x+4\right)\)
\(=-\left(x-2\right)^2\)
d: \(x^3-2x^2+x-xy^2\)
\(=x\left(x^2-2x+1-y^2\right)\)
\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)
\(=x\left[\left(x-1\right)^2-y^2\right]\)
\(=x\left(x-1-y\right)\left(x-1+y\right)\)
e: \(27-3x^2\)
\(=3\left(9-x^2\right)\)
\(=3\left(3-x\right)\left(3+x\right)\)
f: \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x+1+y\right)\left(x+1-y\right)\)
e) Ta có: \(a^3-a^2-a+1\)
\(=a^2\left(a-1\right)-\left(a-1\right)\)
\(=\left(a-1\right)\left(a^2-1\right)\)
\(=\left(a-1\right)^2\cdot\left(a+1\right)\)
f) Ta có: \(x^3-2xy-x^2y+2y^2\)
\(=x^2\left(x-y\right)-2y\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-2y\right)\)
a) \(\left(a^2+b^2\right)^2-4a^2b^2=\left(a^2+b^2+2ab\right)\left(a^2+b^2-2ab\right)=\left(a+b\right)^2.\left(a-b\right)^2\)
b) \(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
c) \(-x^3+3x^2-3x+1=\left(1-x\right)^3\)
d) Đề sai ko ???
e) \(a^3-a^2-a+1=a^2\left(a-1\right)-\left(a-1\right)=\left(a-1\right)\left(a^2-1\right)=\left(a-1\right)^2\left(a+1\right)\)
f) \(x^3-2xy-x^2y+2y^2=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x-y\right)\left(x^2-2y\right)\)
c: \(=\left(5x-y\right)\left(5x+y\right)\)
e: \(=\left(x-2\right)\left(x-3\right)\)
a) x(4y-10x)
b)3(x+2y)+(x+1)
c)(5x-y)(5x+y)
d)5x(y-z)2
e)(x-3)(x-2)
f)(2x+y)3
Bài 2:
a: \(A=\left(x+1\right)^3+5=20^3+5=8005\)
b: \(B=\left(x-1\right)^3+1=10^3+1=1001\)
\(A=5\left(x^2-\dfrac{1}{5}x+\dfrac{1}{100}\right)+\dfrac{39}{20}=5\left(x-\dfrac{1}{10}\right)^2+\dfrac{39}{20}\ge\dfrac{39}{20}\)
\(A_{min}=\dfrac{39}{20}\) khi \(x=\dfrac{1}{10}\)
\(B=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{36}\right)+2\left(y^2-\dfrac{1}{2}y+\dfrac{1}{16}\right)-\dfrac{269}{24}=3\left(x+\dfrac{1}{6}\right)^2+2\left(y-\dfrac{1}{4}\right)^2-\dfrac{269}{24}\ge-\dfrac{269}{24}\)
\(B_{min}=-\dfrac{269}{24}\) khi \(x=-\dfrac{1}{6};y=\dfrac{1}{4}\)
A= 5x2-xz+2
A= (√5.x)2-2.√5.x.\(\dfrac{\text{√5}}{10}\)+\(\dfrac{1}{20}+\dfrac{39}{20}\)
A=(√5.x-\(\dfrac{\text{√5}}{10}\))2+\(\dfrac{39}{20}\)≥\(\dfrac{39}{20}\)
Dấu "=" xảy ra ⇔ (√5.x-\(\dfrac{\text{√5}}{10}\))=0
⇔ √5.x=\(\dfrac{\text{√5}}{10}\) ⇔ x=\(\dfrac{1}{10}\)
Vậy GTNN của A=\(\dfrac{39}{20}\) tại x=\(\dfrac{1}{10}\)