K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2021

\(A^2=\left(\sqrt{1-x}+\sqrt{1+x}\right)^2\le\left(1^2+1^2\right)\left(1-x+1+x\right)=4\\ \Leftrightarrow A\le2\\ A_{max}=2\Leftrightarrow1-x=1+x\Leftrightarrow x=0\\ A^2=2+2\sqrt{1-x^2}\ge2\\ \Leftrightarrow A\ge\sqrt{2}\\ A_{min}=\sqrt{2}\Leftrightarrow1-x^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy \(\sqrt{2}\le A\le2\)

NV
6 tháng 1 2022

\(A\le\sqrt{\left(3^2+4^2\right)\left(x-1\right)\left(5-x\right)}=10\)

\(A_{max}=10\) khi \(\dfrac{\sqrt{x-1}}{3}=\dfrac{\sqrt{5-x}}{4}\Rightarrow x=\dfrac{61}{25}\)

\(A=3\left(\sqrt{x-1}+\sqrt{5-x}\right)+\sqrt{5-x}\ge3\left(\sqrt{x-1}+\sqrt{5-x}\right)\ge3\sqrt{x-1+5-x}=6\)

\(A_{min}=6\) khi \(x=5\)

6 tháng 9 2023

\(B=\dfrac{x-\sqrt[]{x}}{\sqrt[]{x}-\left(x+1\right)}\)

\(B\) xác định \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt[]{x}-\left(x+1\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2+x+1\ne0,\forall x\in R\end{matrix}\right.\) \(\Leftrightarrow x\ge0\)

\(\Leftrightarrow B=\dfrac{x-\sqrt[]{x}+1-1}{-\left(x-\sqrt[]{x}+1\right)}\)

\(\Leftrightarrow B=-1+\dfrac{1}{x-\sqrt[]{x}+1}\)

\(\Leftrightarrow B=-1+\dfrac{1}{x-\sqrt[]{x}+\dfrac{1}{4}-\dfrac{1}{4}+1}\)

\(\Leftrightarrow B=-1+\dfrac{1}{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)

mà \(\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4},\forall x\ge0\)

\(\Rightarrow B=-1+\dfrac{1}{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le-1+\dfrac{4}{3}=\dfrac{1}{3}\)

\(\Rightarrow GTLN\left(B\right)=\dfrac{1}{3}\left(tại.x=\dfrac{1}{4}\right)\)

1:

a: \(A=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

căn x+1>=1

=>2/căn x+1<=2

=>-2/căn x+1>=-2

=>A>=-2+1=-1

Dấu = xảy ra khi x=0

b: loading...

28 tháng 8 2020

Mọi người giải giúp em nhé

Tính hợp lí

(2018/2017-2019/2018+2020/2019)×(1/2-

1/3-1/6)×(1/2+1/3+1/4+...+1/2020)

Em cảm ơn

28 tháng 8 2020

Tìm Max trước thôi nhé, Min nghĩ sau:V

a) đk: \(1\le x\le4\)

Ta có: \(A=\sqrt{x-1}+\sqrt{4-x}\)

=> \(A^2=\left(\sqrt{x-1}+\sqrt{4-x}\right)\le\left(1^2+1^2\right)\left(x-1+4-x\right)=2.3=6\)

=> \(A\le\sqrt{6}\) ( BĐT Bunhiacopxki)

Dấu "=" xảy ra khi: \(x-1=4-x\Rightarrow x=\frac{5}{2}\)

Vậy Max(A) = \(\sqrt{6}\) khi x = 5/2

b) đk: \(-1\le x\le6\)

Tương tự sử dụng BĐT Bunhiacopxki:

\(B\le\sqrt{\left(1^2+1^2\right)\left(x+1+6-x\right)}=\sqrt{2.7}=\sqrt{14}\)

Dấu "=" xảy ra khi: \(x+1=6-x\Rightarrow x=\frac{5}{2}\)

Vậy Max(B) = \(\sqrt{14}\) khi \(x=\frac{5}{2}\)

12 tháng 6 2017

ta có \(\frac{x+\sqrt{x}+1}{x+2\sqrt{x}+1}=\frac{\left(\sqrt{x}\right)^2+\sqrt{x}+1}{\left(\sqrt{x}+1\right)^2}\)

đặt (căn x )+1 = a=> căn x = a- 1 => x = (a - 1 ) ^2 thay vào rùi tự làm nhé ^-^

12 tháng 6 2017

giải thích rõ chút đi bạn

13 tháng 6 2017

Đặt \(\sqrt{x}=a\ge0\)

\(\Rightarrow A=\frac{a^2+a+1}{a^2+2a+1}\)

\(\Leftrightarrow\left(A-1\right)a^2+\left(2A-1\right)a+A-1=0\)

Để PT theo nghiệm a có nghiệm thì 

\(\Delta=\left(2A-1\right)^2-4\left(A-1\right)\left(A-1\right)\ge0\)

\(\Leftrightarrow4A-3\ge0\)

\(\Leftrightarrow A\ge\frac{3}{4}\)

Ta lại có: \(A=\frac{a^2+a+1}{a^2+2a+1}=1-\frac{a}{a^2+2a+1}\le1\)

Vậy ...