K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2020

ĐKXĐ: \(\hept{\begin{cases}x\ge0\\\sqrt{x}-2\ne0\end{cases}}\)<=>\(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

Ta có \(C=\left(x-1\right)-\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}\)

<=>\(C=\left(x-1\right)-\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}\)

<=>\(C=x-1-\left(2\sqrt{x}+1\right)\)

<=>\(C=x-2\sqrt{x}-2\)

<=>\(C=\left(\sqrt{x}-1\right)^2-3\ge-3\)

Vậy GTNN của C là -3. Dấu "=" xảy ra <=> x=1 (tm ĐKXĐ)

11 tháng 10 2016

Đặt \(\hept{\begin{cases}\sqrt{2x+3}=a\left(a>0\right)\\\sqrt{y}=b\left(b\ge0\right)\end{cases}}\)

Thì ta có

\(\frac{b^2}{a^2}=\frac{a+1}{b+1}\)

\(\Leftrightarrow b^3+b^2=a^3+a^2\)

\(\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2\right)+\left(b-a\right)\left(b+a\right)=0\)

\(\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2+b+a\right)=0\)

Mà \(\left(b^2+ab+a^2+b+a\right)>0\)

\(\Rightarrow a=b\)

\(\Rightarrow2x+3=y\)

Thế vào Q ta được 

\(Q=2x^2-5x-12=\left(2x^2-\frac{2x\times\sqrt{2}\times5}{2\sqrt{2}}+\frac{25}{8}\right)-\frac{121}{8}\)

\(=\left(\sqrt{2}x-\frac{5}{2\sqrt{2}}\right)^2-\frac{121}{8}\ge\frac{-121}{8}\)

NV
12 tháng 2 2020

ĐKXĐ: ...

Đặt \(\sqrt{2x-1}=t\ge0\Rightarrow x=\frac{t^2+1}{2}\)

\(\Rightarrow A=\frac{2t^2+6t+4}{t^2+4t+3}=\frac{2\left(t+1\right)\left(t+2\right)}{\left(t+1\right)\left(t+3\right)}=\frac{2\left(t+2\right)}{t+3}=2-\frac{2}{t+3}\ge2-\frac{2}{3}=\frac{4}{3}\)

Dấu "=" xảy ra khi \(t=0\Leftrightarrow x=\frac{1}{2}\)

12 tháng 2 2017

\(\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{\sqrt{x}+1-4}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+1}-\frac{4}{\sqrt{x}+1}=1-\frac{4}{\sqrt{x+1}}\)

Để \(1-\frac{4}{\sqrt{x}+1}\) lớn nhất <=> \(\frac{4}{\sqrt{x}+1}\) lớn nhất => \(\sqrt{x}+1\)nhỏ nhất

Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\)

Dấu "=" xảy ra <=> \(\sqrt{x}=0\Rightarrow x=0\)

Vậy .........

12 tháng 6 2018

đkxđ:x>=0

\(A^2=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x+1}\right)^2}=\frac{x-2\sqrt{x}+1}{x+1}=1-\frac{2\sqrt{x}}{x+1}\)

vì \(\left(\sqrt{x}-1\right)^2=x-2\sqrt{x}+1>=0\Rightarrow x+1>=2\sqrt{x}\)

\(\Rightarrow\frac{2\sqrt{x}}{x+1}< =\frac{x+1}{x+1}=1\Rightarrow1-\frac{2\sqrt{x}}{x+1}>=1-1=0\)

dấu = xảy ra khi x=1

vậy min A là 0 khi x-=1

12 tháng 6 2018

\(A^2>=0\Rightarrow A>=0\)nhá

15 tháng 7 2019

\(C=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x-\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\) (tự tìm ĐKXĐ)

\(=\frac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}-1\right)+2\left(\sqrt{x}+1\right)\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}+1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+3\)

GTNN:\(x-\sqrt{x}+3=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

\(\Rightarrow Min\left(C\right)=\frac{11}{4}khi..\sqrt{x}-\frac{1}{2}=0\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)