K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2018

A = \(\left|x+2\right|+3\)

Ta có : \(\left|x+2\right|\ge0\) với mọi x

\(\Rightarrow\left|x+2\right|+3\ge3\) với mọi x

Dấu = xảy ra \(\Leftrightarrow\left|x+2\right|=0\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy \(Min_A=3\Leftrightarrow x=-2\)

16 tháng 4 2018

thanks!

9 tháng 5 2022

<=>\(\left\{{}\begin{matrix}x+6=x.khi.x+6\ge0\Leftrightarrow x\ge-6\left(1\right)\\-\left(x+6\right)=x.khi.x+6< 0\Leftrightarrow x< -6\left(2\right)\end{matrix}\right.\)

Giải pt (1) khi x >= -6 ta được :

x+6 = x

<=> x+6 -x =0

<=> 6 = 0 ( vô lý)

Giải pt (2) khi x < -6 ta được :

-(x+6) = x 

<=> -x - 6 -x = 0

<=>-2x-6 =0 

<=> -2x = 6

<=> x = -3 ( loại )

Vậy bpt trên vô nghiệm.

9 tháng 5 2022

<=>{x+6=x.khi.x+6≥0⇔x≥−6(1)−(x+6)=x.khi.x+6<0⇔x<−6(2){x+6=x.khi.x+6≥0⇔x≥−6(1)−(x+6)=x.khi.x+6<0⇔x<−6(2)

Giải pt (1) khi x >= -6 ta được :

x+6 = x

<=> x+6 -x =0

<=> 6 = 0 ( vô lý)

Giải pt (2) khi x < -6 ta được :

-(x+6) = x 

<=> -x - 6 -x = 0

<=>-2x-6 =0 

<=> -2x = 6

<=> x = -3 ( loại )

Vậy pt trên vô nghiệm.

27 tháng 7 2015

Nếu x + 5 > 0 \(\Leftrightarrow\) x > - 5 thì

A = x + 5 + 2 - x = 7

Nếu x + 5 < 0 \(\Leftrightarrow\) x < - 5 thì

A = - x - 5 + 2 - x = -2x - 3

13 tháng 7 2018

\(4x^2-x-\frac{3}{16}\)

\(=\left(2x\right)^2-x+\frac{1}{4}-\frac{7}{16}\)

\(=\left(2x-\frac{1}{2}\right)^2-\frac{7}{16}\)

Mà  \(\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-\frac{1}{2}\right)^2-\frac{7}{16}\ge-\frac{7}{16}\)

Dấu " = " xảy ra \(\Leftrightarrow\left(2x-\frac{1}{2}\right)^2=0\)

\(x=\frac{1}{4}\)

Vậy GTNN của biểu thức bằng \(-\frac{7}{16}\) tại \(x=\frac{1}{4}\)

13 tháng 7 2018

Gọi biểu thức trên là A. Ta có:

\(A=4x^2-x-\frac{3}{16}\)

\(A=4x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2-\frac{3}{16}\)

\(A=\left(2x-\frac{1}{2}\right)^2-\frac{1}{4}-\frac{3}{16}\)

\(A=\left(2x-\frac{1}{2}\right)^2-\frac{7}{16}\)

Nhận xét: \(\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-\frac{1}{2}\right)^2-\frac{7}{16}\ge\frac{-7}{16}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{4}\)

Vậy \(minA=\frac{-7}{16}\Leftrightarrow x=\frac{1}{4}\)

9 tháng 10 2021

\(x+\dfrac{1}{x}=3\Leftrightarrow\left(x+\dfrac{1}{x}\right)^3=27\\ \Leftrightarrow x^3+\left(\dfrac{1}{x}\right)^3+3x\cdot\dfrac{1}{x}\left(x+\dfrac{1}{x}\right)=27\\ \Leftrightarrow x^3+\dfrac{1}{x^3}+3\cdot3=27\\ \Leftrightarrow x^3+\dfrac{1}{x^3}=18\)

AH
Akai Haruma
Giáo viên
11 tháng 7 2023

Bài 1:

a. $M=x^2+4x+9=(x^2+4x+4)+5=(x+2)^2+5\geq 0+5=5$ do $(x+2)^2\geq 0$ với mọi $x$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+2=0\Leftrightarrow x=-2$
b.

$N=x^2-20x+101=(x^2-20x+10^2)+1=(x-10)^2+1\geq 1$ do $(x-10)^2\geq 0$ với mọi $x$

Vậy $N_{\min}=1$. Giá trị này đạt tại $x-10=0\Leftrightarrow x=10$

AH
Akai Haruma
Giáo viên
11 tháng 7 2023

Bài 2:

a.

$C=-y^2+6y-15$
$-C=y^2-6y+15=(y^2-6y+9)+6=(y-3)^2+6\geq 6$ (do $(y-3)^2\geq 0$ với mọi $y$)

$\Rightarrow C\leq -6$

Vậy $C_{\max}=-6$. Giá trị này đạt tại $y-3=0\Leftrightarrow y=3$
b.

$-B=x^2-9x+12=(x^2-9x+4,5^2)-8,25=(x-4,5)^2-8,25\geq -8,25$ do $(x-4,5)^2\geq 0$ với mọi $x$

$\Rightarrow B\leq 8,25$
Vậy $B_{\max}=8,25$. Giá trị này đạt tại $x-4,5=0\Leftrightarrow x=4,5$

9 tháng 11 2017

| 4x - 3m | = 2x + m

=> 4x - 3m \(\in\){ 2x + m; -2x - m }

+) 4x - 3m = 2x + m               +) 4x - 3m = -2x - m

     4x - 2x = m + 3m                   4x + 2x = -m + 3m

      2x       = 4m                          6x          = 2m

Mới học lớp 7 nên mình chưa biết " giải phương trình " là gì, mình chỉ biết đến đây thôi :)

9 tháng 9 2019

1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

9 tháng 9 2019

b/

\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)

\(=16+8+20=44\)

\(\Rightarrow B\ge11\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)