K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

1) Áp dụng BĐT bunhia, ta có 

\(P^2\le3\left(6a+6b+6c\right)=18\Rightarrow P\le3\sqrt{2}\)

Dấu = xảy ra <=> a=b=c=1/3

21 tháng 7 2017

A)\(A=2.x^2-4.x+10\)

\(2A=4.x^2-8x+20\)

\(2A=4.x^2-2.2x.2+2^2+16\)

\(2A=\left(2x-2\right)^2+16\ge16\forall x\)

\(A=8\)

DẤU =XẢY RA KHI \(\left(2x-2\right)^2=0\leftrightarrow x=1\)

VẬY GTNN CỦA A LÀ 8 VỚI x=1

C)\(\left(x-1\right)\left(x+2\right)+3x+5\)

\(C=x^2+2x-x-2+3x+5\)

\(C=x^2+4x+3\)

\(4C=4x^2+16x+12\)

\(4C=4x^2+2.2x.4+4^2-4\)

\(4C=\left(2x+4\right)^2-4\ge-4\forall x\)

\(C=-1\)

DẤU = XẢY RA KHI\(\left(2x+4\right)^2=0\leftrightarrow x=-2\)

VẬY GTNN CỦA C  LÀ -1 VỚI X=-2

XIN LỖI MÌNH CHỈ BIẾT LÀM 2 CÂU THÔI

7 tháng 6 2020

Akai Haruma chị cứu em bài này với : Câu hỏi của Hàn Thất - Toán lớp 7 | Học trực tuyến

AH
Akai Haruma
Giáo viên
7 tháng 6 2020

Lời giải:
\(N=\frac{4(x-2)}{(x^2-4x+4)+4}=\frac{4(x-2)}{(x-2)^2+4}=\frac{4t}{t^2+4}\)

Có:

\(N+2=\frac{t^2+4t+4}{t^2+4}=\frac{(t+2)^2}{t^2+4}\geq 0, \forall t\in\mathbb{R}\)

\(\Rightarrow N\geq -2\) hay $N_{\min}=-2$ khi $t=-2\Leftrightarrow x=0$

\(N-2=-\frac{t^2-4t+4}{t^2+4}=\frac{-(t-2)^2}{t^2+4}\leq 0, \forall t\in\mathbb{R}\)

\(\Rightarrow N\leq 2\) hay $N_{\max}=2$ khi $t=2\Leftrightarrow x=4$

Vậy......

7 tháng 7 2017

Áp dụng bđt Bunhiacopxki

\(\left(x+y\right)^2\le\left(x^2+y^2\right)\left(1+1\right)=2.2=4\)

<=>\(-2\le x+y\le2\)

GTNN của x+y là -2 khi x=y=-1

GTLN của x+y là 2 khi x=y=1

7 tháng 7 2017

thank you verry much

18 tháng 5 2022

\(x>0\)

\(C=x+\dfrac{1}{4x}+\dfrac{x}{\left(2x+1\right)^2}=\dfrac{4x^2+1}{4x}+\dfrac{x}{\left(2x+1\right)^2}\)

-Ta đặt \(A=T=4x^2+1;B=4x\) thì ta có: 

\(A\ge B\Rightarrow A+T\ge B+T\) (do \(T>0\))\(\Rightarrow\dfrac{A+T}{B+T}\ge1\)

-Do đó: \(C=\dfrac{4x^2+1}{4x}+\dfrac{x}{\left(2x+1\right)^2}\ge\text{​​​​}\dfrac{4x^2+1+4x^2+1}{4x+4x^2+1}+\dfrac{x}{\left(2x+1\right)^2}=\dfrac{2\left(4x^2+1\right)}{\left(2x+1\right)^2}+\dfrac{8x}{\left(2x+1\right)^2}-\dfrac{7x}{\left(2x+1\right)^2}=\dfrac{2\left(2x+1\right)^2}{\left(2x+1\right)^2}-\dfrac{7x}{\left(2x+1\right)^2}=2-\dfrac{7x}{\left(2x+1\right)^2}\)

-Áp dụng BĐT AM-GM ta có:

\(C\ge2-\dfrac{7x}{\left(2x+1\right)^2}\ge2-\dfrac{7x}{4.2x}=2-\dfrac{7}{8}=\dfrac{9}{8}\)

\(C=\dfrac{9}{8}\Leftrightarrow x=\dfrac{1}{2}\)

-Vậy \(C_{min}=\dfrac{9}{8}\)