Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(C=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}=\frac{\left|x-2019\right|+2021-1}{\left|x-2019\right|+2021}=1-\frac{1}{\left|x-2019\right|+2021}\)
=> C đạt giá trị nhỏ nhất khi \(\frac{1}{\left|x-2019\right|+2021}\) lớn nhất
=> |x - 2019| + 2021 nhỏ nhất
Ta có: \(\left|x-2019\right|\ge0\)
\(\Rightarrow\left|x-2019\right|+2021\ge2021\)
Dấu "=" xảy ra khi x - 2019 = 0
=> x = 2019
\(\Rightarrow C=\frac{\left|2019-2019\right|+2020}{\left|2019-2019\right|+2021}=\frac{2020}{2021}\)
Vậy \(MinC=\frac{2020}{2021}\Leftrightarrow x=2019\).
Tìm giá trị nhỏ nhất của biểu thức:
\(A=\left|x-2019\right|+\left|x-2020\right|+\left|x-2021\right|\)
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$|x-2019|+|x-2021|=|x-2019|+|2021-x|\geq |x-2019+2021-x|=2$
$|x-2020|\geq 0$ với mọi $x$
$\Rightarrow A=|x-2019|+|x-2020|+|x-2021|\geq 2+0=2$
Vậy $A_{\min}=2$
Giá trị này đạt được khi: $(x-2019)(2021-x)\geq 0$ và $x-2020=0$
Tức là $x=2020$
1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |
= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 |
= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |
Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)
Vậy MinB = 2 <=> x = 2019
2. ĐKXĐ : x ≥ 0
Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)
=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)
Vậy MaxC = 673 <=> x = 0
Ta có : \(\left|x-2019\right|\ge x-2019\). Dấu "=" khi \(x-2019\ge0\)
\(\left|x-2020\right|=\)\(\left|2020-x\right|\ge2020-x\).Dấu "=" khi \(2020-x\ge0\)
=> \(\left|x-2019\right|+\left|2020-x\right|\)\(\ge x-2019+2020-x\)
=> \(\left|x-2019\right|+\left|x-2020\right|+2\)\(\ge3\)
hay \(A\ge3\)
\(MinA=3\Leftrightarrow\)\(\hept{\begin{cases}x-2019\ge0\\2020-x\ge0\end{cases}}\)\(\Leftrightarrow2019\le x\le2020\)
Hình như là vậy á
Chúc bạn học tốt