Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đkxđ \(x\ne1;x\ge0\)
\(P=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{x-2}{\left(\sqrt{x}\right)^3-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(P=\frac{1}{\sqrt{x}-1}-\frac{x-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(P=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{x+\sqrt{x}+1-x+2+x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{x+\sqrt{x}+2}{\left(\sqrt{x}\right)^3-1}\)
\(\left(\frac{x\sqrt{x}+x+2}{x-1}-\frac{1}{\sqrt{x}+1}\right):\frac{1}{x\sqrt{x}-x}\)
\(=\left(\frac{x\sqrt{x}+x+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\frac{x\sqrt{x}-x}{1}\)
\(=\frac{x\sqrt{x}+x+2-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{x\left(\sqrt{x}-1\right)}{1}\)
\(=\frac{x\sqrt{x}+x-\sqrt{x}+3}{\sqrt{x}+1}.x\)
\(=\frac{x^2\sqrt{x}+x^2-x\sqrt{x}+3x}{\sqrt{x}+1}\)
\(........?!\)
\(P=\frac{2005x+2006\sqrt{1-x^2}+2007}{\sqrt{1-x^2}}\)
\(=\frac{2006\left(1+x\right)+\left(1-x\right)}{\sqrt{1-x^2}}+2006\)
\(\ge\frac{2\sqrt{2006\left(1+x\right)\left(1-x\right)}}{\sqrt{1-x^2}}+2006=2\sqrt{2006}+2006\)
Dấu = xảy ra khi:
\(2006\left(1+x\right)=1-x\)
\(\Leftrightarrow x=-\frac{2005}{2007}\)