Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bài này em áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi tích \(a.b\ge0\),
a) Ta có : \(x-y=3\Rightarrow x=3+y\).
Do đó : \(B=\left|x-6\right|+\left|y+1\right|\)
\(=\left|3+y-6\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)
\(\ge\left|3-y+y+1\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(3-y\right)\left(y+1\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)
Vậy giá trị nhỏ nhất của \(B=4\) \(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)
b) Ta có : \(x-y=2\Rightarrow x=2+y\)
Do đó \(C=\left|2x+1\right|+\left|2y+1\right|\)
\(=\left|2y+5\right|+\left|2y+1\right|=\left|-2y-5\right|+\left|2y+1\right|\)
\(\ge\left|-2y-5+2y+1\right|=4\)
Các câu khác tương tự nhé em !
c: Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\dfrac{1}{3}\right)^2\ge0\forall y\)
Do đó: \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\forall x,y\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\forall x,y\)
Dấu '=' xảy ra khi x=-1 và \(y=\dfrac{1}{3}\)
\(C=\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\)
Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y-\frac{1}{3}\right)^2\ge0\end{cases}}\)\(\Rightarrow\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\)
=>\(A=\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\)
Vậy A đạt GTNN khi \(A=\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10=-10\)
<=>\(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-\frac{1}{3}\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+1=0\\y-\frac{1}{3}=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\y=\frac{1}{3}\end{cases}}}\)
Vậy A đạt GTNN là -10 khi x=-1 và x=1/3
Có những kí hiệu mình dùng trong bài mà bạn ko hiểu thì phải hỏi mình nhé :)