K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

\(C=\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\)

Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y-\frac{1}{3}\right)^2\ge0\end{cases}}\)\(\Rightarrow\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\)

=>\(A=\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\)

Vậy A đạt GTNN khi \(A=\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10=-10\)

<=>\(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-\frac{1}{3}\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+1=0\\y-\frac{1}{3}=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\y=\frac{1}{3}\end{cases}}}\)

Vậy A đạt GTNN là -10 khi x=-1 và x=1/3

Có những kí hiệu mình dùng trong bài mà bạn ko hiểu thì phải hỏi mình nhé :)

15 tháng 9 2019

Tran bang

Bạn đợi tí nha ! Mình đang làm !

Câu d là dấu " ) "  đúng không bạn ?

15 tháng 9 2019

\(1+x-2+2x=3\)

\(\left(1-2\right)+\left(x+2x\right)=3\)

\(-1+3x=3\)

\(3x=3-\left(-1\right)=3+1\)

\(3x=4\)

\(x=\frac{4}{3}\)

14 tháng 8 2020

Các bài này em áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi tích \(a.b\ge0\),

a) Ta có : \(x-y=3\Rightarrow x=3+y\).

Do đó : \(B=\left|x-6\right|+\left|y+1\right|\)

\(=\left|3+y-6\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)

\(\ge\left|3-y+y+1\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(3-y\right)\left(y+1\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

Vậy giá trị nhỏ nhất của \(B=4\) \(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

b) Ta có : \(x-y=2\Rightarrow x=2+y\)

Do đó \(C=\left|2x+1\right|+\left|2y+1\right|\)

\(=\left|2y+5\right|+\left|2y+1\right|=\left|-2y-5\right|+\left|2y+1\right|\)

\(\ge\left|-2y-5+2y+1\right|=4\)

Các câu khác tương tự nhé em !

14 tháng 8 2020

Làm nốt câu c

                                                  Bài giải

c, Ta có : 

\(D=\left|2x+3\right|+\left|y+2\right|+2\ge\left|2x+3+y+2\right|+2=\left|3+3+2\right|+2=8+2=10\)

Dấu " = " xảy ra khi \(2x+y=3\)

Vậy \(\text{​​Khi }2x+y=3\text{​​ }Min_D=10\)

c: Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-\dfrac{1}{3}\right)^2\ge0\forall y\)

Do đó: \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\forall x,y\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\forall x,y\)

Dấu '=' xảy ra khi x=-1 và \(y=\dfrac{1}{3}\)