Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
2P = \(2x^2+4xy+4y^2-12x-8y+50\)
= \(\left(x+2y\right)^2-2\left(x+2y\right)\cdot2+4+x^2-8x+16+30\)
= \(\left(x+2y-2\right)^2+\left(x-4\right)^2+30\ge30\)
=> P \(\ge15\)
Dấu '' = '' xảy ra khi x = 4 ; y = -1
\(A=\sqrt{2x^2-4x+3}+3\)
Ta có: \(2x^2-4x+3\)
\(=2\left(x^2-2x+\frac{3}{2}\right)\)
\(=2\left(x^2-2.x.1+1^2+\frac{1}{2}\right)\)
\(=2[\left(x-1\right)^2+\frac{1}{2}]\)
\(=2\left(x-1\right)^2+1\ge1\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}+3\ge3+\sqrt{1}=4\)
\(\Rightarrow MinA=4\Leftrightarrow x=1\)
\(B=x^2+2y^2-2xy+2x-4y-12\)
\(B=\left(x^2-2xy+y^2\right)+y^2+2x-4y-12\)
\(B=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y^2-2y+1\right)+10\)
\(B=\left(x-y+1\right)^2+\left(y-1\right)^2+10\)
Mà \(\left(x-y+1\right)^2\ge0\forall x;y\)
\(\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow B\ge10\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}x-y+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)
Vậy \(B_{Min}=10\Leftrightarrow\left(x;y\right)=\left(0;1\right)\)
Xét \(2M=2x^2+4xy+4y^2-2x+10\)
\(=\left(x^2+4xy+4y^2\right)+x^2-2x+1+9\)
\(=\left(x+2y\right)^2+\left(x-1\right)^2+9\ge9\)
\(\Rightarrow M\ge\frac{9}{2}\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=1\\y=-\frac{1}{2}\end{matrix}\right.\)
Vậy..
\(M=\frac{1}{2}\left(x^2+4xy+4y^2\right)+\frac{1}{2}\left(x^2-2x+1\right)+\frac{9}{2}\)
\(M=\frac{1}{2}\left(x+2y\right)^2+\frac{1}{2}\left(x-1\right)^2+\frac{9}{2}\ge\frac{9}{2}\)
\(M_{min}=\frac{9}{2}\) khi \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)