K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

\(A=\frac{1}{2}\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\)

Min A= 1/2  khi x = y =1/2

8 tháng 4 2016

Vì x+y=1

=>y=1-x

Ta có: \(A=x^2+y^2=x^2+\left(1-x\right)^2=x^2+1\left(1-x\right)-x\left(1-x\right)=x^2+1-x-x+x^2\)

\(A=2x^2-2x+1=2.\left(x^2-x+\frac{1}{2}\right)\)

\(A=2.\left(x^2-\frac{1}{2}x-\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}+\frac{1}{2}\right)=2\left[x\left(x-\frac{1}{2}\right)-\frac{1}{2}\left(x-\frac{1}{2}\right)+\frac{1}{4}\right]\)

\(A=2\left[\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\right]=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\)

\(2\left(x-\frac{1}{2}\right)^2>=0\) với mọi x

=>\(2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}>=\frac{1}{2}\) với mọi x

Dấu "=" xảy ra <=>\(x=\frac{1}{2}\);mà x+y=1=>\(y=\frac{1}{2}\)

Khi đó GTNN của A=x2+y2 là 1/2 tại \(x=y=\frac{1}{2}\)

 

 

29 tháng 4 2016

Ta có:

\(A=\left|x-4\right|+\left|x-2020\right|=\left|x-4\right|+\left|2020-x\right|\ge x-4+2020-x=2016\)

Dấu "=" xảy ra <=> x - 4 \(\ge0\)

                          và 2020 - x \(\ge0\)

<=> \(x\ge4\) và \(x\le2020\)

\(\Leftrightarrow4\le x\le2020\)

Vậy A đạt GTNN là 2016 \(\Leftrightarrow4\le x\le2020\)

28 tháng 4 2016

7< y : 4 < 9

24 tháng 4 2016

hỉu j chết liềnohooho

25 tháng 4 2016

Đồ đầu đất .Làm đươc rồi ,khỏi cần làm nữa

10 tháng 6 2016

A=x

20 tháng 7 2016

a) A=x^2+2

b) mình nghĩ x thuộc tập hợp R

c)GTNN của A=1/4 khi x=1/2

Ta luôn có \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)  và  \(\left|x-y\right|=\left|y-x\right|\)

\(\Rightarrow\left|x-2\right|=\left|2-x\right|;\left|x-4\right|=\left|4-x\right|;...;\left|x-8\right|=\left|8-x\right|;\left|x-10\right|=\left|10-x\right|\)

\(\Rightarrow A=\left|x-1\right|+\left|2-x\right|+\left|x+3\right|+\left|4-x\right|+...+\left|x-9\right|+\left|10-x\right|\)

\(\Rightarrow A\ge\left|x-1+2-x+x-3+4-x+...+x-9+10-x\right|\)

\(=\left|\left(x-x+x-x+x-x+...+x-x\right)+\left(2-1\right)+\left(4-3\right)+...+\left(10-9\right)\right|\)

\(=\left|0+1+1+1+1+1\right|\)

\(=5\)

\(\Rightarrow A\ge5\)

\(\Rightarrow\) GTNN của A = 5 tại \(\left(x-1\right)\left(2-x\right)\left(x-3\right)...\left(x-10\right)\ge0\)

 

 

 

24 tháng 1 2016

a) ta có: (x-3,5)2 lớn hơn hoặc bằng 0

=> (x-3,5)2 +2 >= 2

=> GTNN của bt (x-3,5)2+2 là 2

khi x-3,5 =0

      => x= 3,5

b) ta có: (2x-3)4 lớn hơn hoặc bằng 0

=> (2x-3)4 -5 >= -5

=> GTNN của bt (2x-3)- 5 là -5

khi 2x-3 = 0

=> 2x= 3

=> x= 3/2

tick mk nhìu nhé haha

24 tháng 1 2016

 hám like quá

28 tháng 4 2016

\(A=\frac{\sqrt{x}-5}{\sqrt{x}+5}=\frac{\sqrt{x}+5-10}{\sqrt{x}+5}=1-\frac{10}{\sqrt{x}+5}\)

\(A< \frac{1}{3}=>1-\frac{10}{\sqrt{x}+5}< \frac{1}{3}\)

\(=>1-\frac{1}{3}< \frac{10}{\sqrt{x}+5}=>\frac{2}{3}< \frac{10}{\sqrt{x}+5}\)

\(=>2.\left(\sqrt{x}+5\right)< 30=>2\sqrt{x}+10< 30=>2\sqrt{x}< 20\)

\(=>\sqrt{x}< 10=>\left(\sqrt{x}\right)^2< 10^2=>x< 100\)

Vậy x<100 thì A<1/3

8 tháng 12 2016

\(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1>0\) nên A luôn xác định

\(A=\frac{-x^2-2x-5}{x^2+2x+2}\Leftrightarrow x^2\left(A+1\right)+2x\left(A+1\right)+\left(2A+5\right)=0\)

Để A tồn tại giá trị nhỏ nhất thì tồn tại giá trị x thỏa mãn min A , vậy thì ta cần tìm điều kiện để phương trình \(x^2\left(A+1\right)+2x\left(A+1\right)+\left(2A+5\right)=0\) có nghiệm.

\(\Delta'=\left(A+1\right)^2-\left(A+1\right)\left(2A+5\right)=-A^2-5A-4\)

\(=-\left(A+1\right)\left(A+4\right)\ge0\)

\(\Leftrightarrow\left(A+1\right)\left(A+4\right)\le0\Leftrightarrow-4\le A\le-1\)

Vậy min A = -4 , tại x = -1

 

 

10 tháng 3 2016

Khó thế! Cậu cần gấp ko? Nếu ko thì sáng mai đem hỏi Khánh Linh ấy! Cậu ấy siêu hơn tớ