Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= (x2-2xy +y2)+(2x-2y)+1+(y2-8y+16)
A= (x-y)2 +2(x-y) +1 +(y-4)2
A= (x-y+1)2 +(y-4)2
Vì (x-y+1)2 +(y-4)2 >= 0 với mọi x,y
Dấu = xảy ra <=> x-y+1=0 và y-4=0
<=> x=3 và y=4
A=[(X2-2XY+Y2)+2(X-Y)+1]+(Y2-8Y+16)=(X-Y+1)2+(Y-4)2>=0
=>Amin=0 khi y=4;x=3
a) \(C=4x^2+3y^2+4xy-4x-10y+7=\left[4x^2+4x\left(y-1\right)+\left(y-1\right)^2\right]+2\left(y^2-4y+4\right)-2=\left(2x+y-1\right)^2+2\left(y-2\right)^2-2\ge-2\)
\(minC=-2\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=2\end{matrix}\right.\)
d) \(D=x^2-2xy+6y^2-12x+2y+45=\left[x^2-2x\left(y+6\right)+\left(y+6\right)^2\right]+5\left(y^2-2y+1\right)+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
\(minD=4\Leftrightarrow\) \(\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
Ta có: \(A=x^2-2xy+2y^2+2x-10y+17\)
\(=x^2-2xy+y^2+y^2+2x-2y-8y+1+16\)
\(=\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)\)
\(=\left(x-y+1\right)^2+\left(y-4\right)^2\)
Ta có: \(\left(x-y+1\right)^2\ge0\forall x,y\)
\(\left(y-4\right)^2\ge0\forall y\)
Do đó: \(\left(x-y+1\right)^2+\left(y-4\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi:
\(\left\{{}\begin{matrix}\left(x-y+1\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-4+1=0\\y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-2xy+2y^2+2x-10y+17\) là 0 khi x=3 và y=4
Có link câu này bạn tham khảo xem có được không nhé
https://h.vn/hoi-dap/question/535151.html
Học tốt nhé!
A=(x2+y2+1-2xy+2x-2y)+(y2-8y+16)
A=(x-y+1)2+(y-4)2>=0
MinA=0 khi và chỉ khi xảy ra đồng thời y-4=0 và x-y+1=0
<=>y=4;x=3
`x^2-2xy+2y^2+2x-10+2038`
`=x^2-2xy+y^2+2(x-y)+y^2-8y+2038`
`=(x-y)^2+2(x-y)+1+y^2-8y+16+2021`
`=(x-y+1)^2+(y-4)^2+2021>=2021`
Dấu "=" `<=>` \(\begin{cases}y=4\\x=y-1=3\\\end{cases}\)
\(x^2-2xy+2y^2+2x-10y+2038=\left(x-y+1\right)^2+\left(y-4\right)^2+2021\ge2021\)
Dấu = xảy ra khi:
\(\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\)
=> x = 3 và y = 4