K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 6 2019

ĐKXĐ: \(x>0;x\ne1\)

\(A=\left(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)+\left(\frac{x-1}{\sqrt{x}}\right)\left(\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(A=\left(\frac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\right)+\frac{2x+2}{\sqrt{x}}\)

\(A=2+\frac{2x+2}{\sqrt{x}}=\frac{2\left(x+\sqrt{x}+1\right)}{\sqrt{x}}\)

\(A=2\left(\sqrt{x}+\frac{1}{\sqrt{x}}+1\right)\ge2\left(2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}+1\right)=6\)

Dấu "=" xảy ra khi \(x=1\) ko phù hợp ĐKXĐ nên \(A_{min}\) ko tồn tại

17 tháng 6 2019

ĐKXĐ:\(x\ne1;x>0\)

\(A=\left(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)+\frac{x-1}{\sqrt{x}}.\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2}{x-1}\)

\(A=\frac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+2\sqrt{x}+1+x-2\sqrt{x}+1}{\sqrt{x}}\)

\(A=\frac{2x+2\sqrt{x}+2}{\sqrt{x}}=2\sqrt{x}+2+\frac{2}{\sqrt{x}}\ge2\sqrt{2\sqrt{x}.\frac{2}{\sqrt{x}}}+2=6\)

"="\(\Leftrightarrow x=1\)

20 tháng 9 2018

Ai trả lời nhanh và chính xác mình k

⋯MUA THẺ HỌC

a: \(P=\left(\dfrac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}+1\right)}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{x+1+\sqrt{x}}{x+1}\)

\(=\dfrac{2\sqrt{x}+x+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\cdot\dfrac{x+1}{x+\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

b: Thay \(x=9+2\sqrt{7}\) vào P, ta được:

\(P=\dfrac{\sqrt{9+2\sqrt{7}}+1}{9+2\sqrt{7}+\sqrt{9+2\sqrt{7}+1}}\simeq0,25\)

22 tháng 7 2015

a)

\(P=\frac{2\sqrt{x}-1}{\sqrt{x}+1}\)