K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

a)

A(x)=x2+x+1

A(x)=x2+x+1/4-1/4+1

A(x)=(x+1/2)2+3/4

(x+1/2)2 ≥0

=> (x+1/2)2+3/4≥3/4

=> A(x)≥3/4

dấu "=" xảy ra khi (x+1/2)2=0

ta có:

A(x)=(x+1/2)2+3/4=3/4

=> (x+1/2)2=0

=> x=-1/2

vậy Min của A(x) là 3/4tại x=-1/2

b) B(x)=2x2+3x+5

=>B(x)= 2(x2+3/2x+5/2)

=> B(x)=2(x2+3/2x+9/16-9/16+5/2)

=> B(x)=2[ (x+3/4)2+31/16]

ta có:(x+3/4)2≥0

=>(x+3/4)2+31/16≥31/16

=>2[(x+3/4)2+31/16]≥31/8

=> B(x)≥31/8

dấu "=" xảy ra khi (x+3/4)2=0

với x+3/4=0

=>x=-3/4

vậy min của B(x) là 31/8 tại x=-3/4

25 tháng 10 2023

A) \(A=-3x^2+x+1\)

\(A=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)

\(A=-3\left(x^2-2\cdot\dfrac{1}{6}\cdot x+\dfrac{1}{36}-\dfrac{13}{36}\right)\)

\(A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)

Mà: \(-3\left(x-\dfrac{1}{6}\right)^2\le0\forall x\)

\(\Rightarrow A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\le\dfrac{13}{12}\forall x\)

Dấu "=" xảy ra khi:

\(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)

Vậy: \(A_{max}=\dfrac{13}{12}.khi.x=\dfrac{1}{6}\)

B) \(B=2x^2-8x+1\)

\(B=2\left(x^2-4x+\dfrac{1}{2}\right)\)

\(B=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)

\(B=2\left(x-2\right)^2-7\)

Mà: \(2\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow B=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu "=" xảy ra khi:

\(x-2=0\Rightarrow x=2\)

Vậy: \(B_{min}=2.khi.x=2\)

25 tháng 10 2023

câu a) bạn viết sai đề rồi

 

Ta có: \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=\left(x+2\right)-\left(x-5\right)\)

\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5=x+2-x+5\)

\(\Leftrightarrow18x-2=7\)

\(\Leftrightarrow18x=9\)

hay \(x=\dfrac{1}{2}\)

18 tháng 8 2021

ủa 2 chứ bạn mình

 

Ta có : |x - 2| ; |x - 5| ; |x - 18| ≥0∀x∈R≥0∀x∈R

=> |x - 2| + |x - 5| + |x - 18|  ≥0∀x∈R≥0∀x∈R

=> D có giá trị nhỏ nhất khi x = 2;5;18

Mà x ko thể đồng thời nhận 3 giá trị

Nên GTNN của D là : 16 khi x = 5   ok nha bạn

x^2/x-1 = x^2-4x+4/x-1 + 4 = (x-2)^1/x-1 + 4 >= 4

Dấu "=" xảy ra <=> x-2 = 0 <=> x = 2 (tm)

Vậy GTNN của x^2/x-1 = 4 <=> x= 2

k mk nha

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Lời giải:

a. $9x^2-16-(3x-4)(2x+5)=0$

$\Leftrightarrow [(3x)^2-4^2]-(3x-4)(2x+5)=0$

$\Leftrightarrow (3x-4)(3x+4)-(3x-4)(2x+5)=0$

$\Leftrightarrow (3x-4)(3x+4-2x-5)=0$

$\Leftrightarrow (3x-4)(x-1)=0$

$\Leftrightarrow 3x-4=0$ hoặc $x-1=0$

$\Leftrightarrow x=\frac{4}{3}$ hoặc $x=1$.

b.

$x^2+4x=12$

$\Leftrightarrow x^2+4x-12=0$

$\Leftrightarrow (x^2-2x)+(6x-12)=0$

$\Leftrightarrow x(x-2)+6(x-2)=0$

$\Leftrightarrow (x-2)(x+6)=0$

$\Leftrightarrow x-2=0$ hoặc $x+6=0$

$\Leftrightarrow x=2$ hoặc $x=-6$

c.

$x^2-2x=35$

$\Leftrightarrow x^2-2x-35=0$

$\Leftrightarrow (x^2+5x)-(7x+35)=0$

$\Leftrightarrow x(x+5)-7(x+5)=0$

$\Leftrightarrow (x+5)(x-7)=0$

$\Leftrightarrow x+5=0$ hoặc $x-7=0$

$\Leftrightarrow x=-5$ hoặc $x=7$

25 tháng 11 2023

cảm ơn bạn nhìu nha vui

3 tháng 7 2018

2/

a, \(A=2x^2+6x-5=2\left(x^2+3x-\frac{5}{2}\right)=2\left(x^2+2x\cdot\frac{3}{2}+\frac{9}{4}-\frac{19}{4}\right)=2\left[\left(x+\frac{3}{2}\right)^2-\frac{19}{4}\right]=2\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\)

Vì \(\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow A=\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\ge-\frac{19}{2}\)

Dấu "=" xảy ra khi x=-3/2

Vậy Amin=-19/2 khi x=-3/2

b,bài này phải tìm min 

 \(B=\left(2x-x\right)\left(x+4\right)=x\left(x+4\right)=x^2+4x=x^2+4x+4-4=\left(x+2\right)^2-4\)

Vì \(\left(x-2\right)^2\ge0\Rightarrow B=\left(x-2\right)^2+4\ge4\)

Dấu "=" xảy ra khi x = 2

Vậy Bmin=4 khi x=2

31 tháng 10 2018

Bài 2)Ta có:

\(2x^2+6x-5\)

\(=2x^2+6x+\frac{9}{2}-\frac{19}{2}\)

\(=2\left(x^2+3x+\frac{9}{4}\right)-\frac{19}{2}\)

\(=2\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\ge-\frac{19}{2}\)

5 tháng 1 2021

3x2 + 3x - 5( x + 1 ) = 0

<=> ( 3x2 + 3x ) - 5( x + 1 ) = 0

<=> 3x( x + 1 ) - 5( x + 1 ) = 0

<=> ( x + 1 )( 3x - 5 ) = 0

<=> x + 1 = 0 hoặc 3x - 5 = 0

<=> x = -1 hoặc x = 5/3

5 tháng 1 2021

cảm ơn bạn nhiều nha