K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2017

\(A=\left(x+\dfrac{2}{3}\right)^2+\dfrac{1}{2}\)

\(\left(x+\dfrac{2}{3}\right)^2\ge0\forall x\in R\)

\(A=\left(x+\dfrac{2}{3}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

Dấu "=" xảy ra khi:

\(\left(x+\dfrac{2}{3}\right)^2=0\Rightarrow x=-\dfrac{2}{3}\)

\(B=\dfrac{2}{\left(x-\dfrac{1}{2}\right)^2+2}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\in R\)

\(\left(x-\dfrac{1}{2}\right)^2+2\ge2\)

\(B=\dfrac{2}{\left(x-\dfrac{1}{2}\right)^2+2}\le1\)

Dấu "=" xảy ra khi:

\(\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{1}{2}\)

13 tháng 11 2017

B=\(\dfrac{1}{\left|x-2\right|+3}\)

do \(\left|x-2\right|\ge0\forall x\)

=> \(\left|x-2\right|+3\ge3\)

=> \(\dfrac{1}{\left|x-2\right|+3}\le\dfrac{1}{3}\)

=> B \(\le\dfrac{1}{3}\)

GTLN của B =\(\dfrac{1}{3}\)

khi x-2=0

=> x=2

vậy GTLN của A=\(\dfrac{1}{3}\) khi x=2

11 tháng 6 2018

\(=x^2+2x-3x-6+x^2-1-x^2+\frac{1}{2}x+\frac{1}{2}x-\frac{1}{4}-x^2\)

\(=\left(x^2+x^2-x^2-x^2\right)+\left(2x-3x+\frac{1}{2}x+\frac{1}{2}x\right)+\left(-6-1-\frac{1}{4}\right)\)

\(=\frac{-29}{4}\)

Vậy...

9 tháng 12 2017

Click để xem thêm, còn nhiều lắm!

11 tháng 2 2018

1. \(A=2x^2-5x-5\)

* Tại \(x=-2\) giá trị của biểu thức là :

\(A=2.\left(-2\right)^2-5.\left(-2\right)-5\)

\(A=8-\left(-10\right)-5=13\)

*Tại \(x=\dfrac{1}{2}\)

\(A=2\left(\dfrac{1}{2}\right)^2-5.\dfrac{1}{2}-5\)

\(A=-7\)

11 tháng 2 2018

Câu 3:

a) \(A=\left(x-3\right)^2+9\ge9,\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)

..........................\(\Leftrightarrow x=3\)

Vậy MIN A = 9 \(\Leftrightarrow x=3\)

P/s: câu b coi lại đề

c) \(\left|x-1\right|+\left(2y-1\right)^4+1\ge1;\forall x,y\)

Dấu "='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\)

Vậy .............................

Câu 5:

Ta có: \(A=\dfrac{x-5}{x-3}=\dfrac{x-3-2}{x-3}=1-\dfrac{2}{x-3}\)

Để A nguyên thì \(2⋮\left(x-3\right)\)

\(\Rightarrow\left(x-3\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Do đó:

\(x-3=-2\Rightarrow x=1\)

\(x-3=-1\Rightarrow x=2\)

\(x-3=1\Rightarrow x=4\)

\(x-3=2\Rightarrow x=5\)

Vậy .....................

5 tháng 7 2018

\(\left(2^x+\dfrac{1}{3}\right)^4\) có mũ chẵn là 4 +> \(\left(2^x+\dfrac{1}{3}\right)^4\) > hoặc bằng 0 . Vậy GTNN của \(\left(2^x+\dfrac{1}{3}\right)^4\)= 0 .

vi GTNN cua \(\left(2^x+\dfrac{1}{3}\right)^4\)=> \(\left(2^x+\dfrac{1}{3}\right)^4\)-1 =0 -1=-1

vay GTNN cua \(\left(2^x+\dfrac{1}{3}\right)^4\)-1 =-1

b, vi \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) co mu chan la 2018 => \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) . hoặc bằng 0

Vậy GTLN của \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) = 0 .Vì \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) = 0 =>

\(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\) +3=0+3=3

Vậy GTLN của \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^{2018}\)+3=3

22 tháng 10 2018
https://i.imgur.com/V0RPqo5.gif

3 câu này bạn áp dụng cái này nhé.

`a^2 >=0 forall a`.

`|a| >=0 forall a`.

`1/a` xác định `<=> a ne 0`.

a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y

Dấu = xảy ra khi x=-30 và y=4

b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y

Dấu = xảy ra khi x=-1/3 và y=1/6

c: -x^2-x+1=-(x^2+x-1)

=-(x^2+x+1/4-5/4)

=-(x+1/2)^2+5/4<=5/4

=>R>=3:5/4=12/5

Dấu = xảy ra khi x=-1/2

Bài 3: 

\(A=\dfrac{-5}{4}\cdot\dfrac{2}{5}x^2y\cdot x^2\cdot x^3y^4=\dfrac{-1}{2}x^7y^5\)

bậc là 12

Hệ số là -1/2

\(B=\dfrac{-3}{4}\cdot\dfrac{-8}{9}\cdot x^5y^4\cdot xy^2\cdot x^2y^5=\dfrac{2}{3}x^8y^{11}\)

Bậc là 19

Hệ số là 2/3