K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 9 2021

a.

\(y=sinx.cosx+1=\dfrac{1}{2}sin2x+1\)

\(-1\le sin2x\le1\Rightarrow\dfrac{1}{2}\le y\le\dfrac{3}{2}\)

\(y_{min}=\dfrac{1}{2}\) khi \(sin2x=-1\Rightarrow x=-\dfrac{\pi}{4}+k\pi\)

\(y_{max}=\dfrac{3}{2}\) khi \(sin2x=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)

b.

\(y=2\left(\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx\right)-2=2.sin\left(x-\dfrac{\pi}{6}\right)-2\)

\(-1\le sin\left(x-\dfrac{\pi}{6}\right)\le1\Rightarrow-4\le y\le0\)

\(y_{min}=-4\) khi \(sin\left(x-\dfrac{\pi}{6}\right)=-1\Rightarrow x=-\dfrac{\pi}{3}+k2\pi\)

\(y_{max}=0\) khi \(sin\left(x-\dfrac{\pi}{6}\right)=1\Rightarrow x=\dfrac{2\pi}{3}+k2\pi\)

6 tháng 10 2021

a) \(y=1-2sinx\)

Ta có: \(-1\le sinx\le1\Rightarrow-2\le2sinx\le2\)

                                   \(\Rightarrow2\ge-2sin2x\ge-2\)

                                   \(\Rightarrow3\ge1-2sinx\ge-1\)

      Vậy \(y_{max}=3,y_{min}=-1\)

25 tháng 11 2023

a: ĐKXĐ: \(cosx-1\ne0\)

=>\(cosx\ne1\)

=>\(x\ne k2\Omega\)

b: ĐKXĐ: sin x-1>=0

=>sin x>=1

mà \(-1< =sinx< =1\)

nên sin x=1

=>\(x=\dfrac{\Omega}{2}+k2\Omega\)

c:

-1<=sin x<=1

=>-1+1<=sin x+1<=1+1

=>0<=sin x+1<=2

ĐKXĐ: \(\dfrac{1+sinx}{1-cosx}>=0\)

mà \(1+sinx>=0\)(cmt)

nên \(1-cosx>0\)

=>\(cosx< 1\)

mà -1<=cosx<=1

nên \(cosx\ne1\)

=>\(x\ne k2\Omega\)

14 tháng 8 2018

25 tháng 2 2017

Chọn B

18 tháng 10 2018

21 tháng 9 2017

Đáp án C

TXĐ:

- Khi đó:

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

2.

$y=\sin ^4x+\cos ^4x=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x$

$=1-\frac{1}{2}(2\sin x\cos x)^2=1-\frac{1}{2}\sin ^22x$

Vì: $0\leq \sin ^22x\leq 1$

$\Rightarrow 1\geq 1-\frac{1}{2}\sin ^22x\geq \frac{1}{2}$

Vậy $y_{\max}=1; y_{\min}=\frac{1}{2}$

 

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

3.

$0\leq |\sin x|\leq 1$

$\Rightarrow 3\geq 3-2|\sin x|\geq 1$

Vậy $y_{\min}=1; y_{\max}=3$