Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đa thức \(f\left(x\right)=2x^2+\text{ax}+b-2.\)chia hết cho \(x-1;x+2\)
Theo đinh lí Bơ - ru ta có
\(f\left(1\right)=2.1^2+a+b-2=0\Rightarrow a+b=0\) (1)
\(f\left(-2\right)=2.\left(-2\right)^2-2a+b-2=0\Rightarrow6-2a+b=0\Rightarrow2a-b=6\)(2)
Cộng (1) và (2) suy ra
\(3a=6\Rightarrow a=2\)thay vào a+b=0 ta có : \(2+b=0\Rightarrow b=-2\)
Vậy a=2 ; a=-2
1-x-2x^2
= 1-x-2x.2x
= 1 - ( x + 2x.2x)
= 1 - 5x
Để 1-x-2x^2 mang giá trị lớn nhất thì x phài là số âm.
\(A=1-x-2x^2\)
\(=-2\left(x^2+2\times x\times\frac{1}{4}+\left(\frac{1}{4}\right)^2-\left(\frac{1}{4}\right)^2-\frac{1}{2}\right)\)
\(=-2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\)
\(\left(x+\frac{1}{4}\right)^2\ge0\)
\(\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\ge-\frac{9}{16}\)
\(-2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\le\frac{9}{8}\)
Vậy Max A = \(\frac{9}{8}\) khi x = \(-\frac{1}{4}\)
5x2 - 4(x2 - 2x + 1) - 5 = 0
=> 5x2 - 4x2 + 8x - 4 - 5 = 0
=> x2 + 8x - 9 = 0
=> x2 + 9x - x - 9 = 0
=> x(x + 9) - (x + 9) = 0
=> (x + 9)(x - 1) = 0
=> x + 9 = 0 => x = -9
hoặc x - 1 = 0 = > x = 1
Vậy x = -9, x = 1
\(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\left(5x^2-5\right)-4\left(x^2-2.1.x+1^2\right)=0\)
\(5\left(x^2-1\right)-4\left(x-1\right)^2=0\)
\(5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)\left(x-1\right)=0\)
\(\left[5\left(x+1\right)-4\left(x-1\right)\right]\left(x-1\right)=0\)
\(\left(5x+5-4x+4\right)\left(x-1\right)=0\)
\(\left(x+9\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+9=0\\x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-9\\x=1\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=-9\\x=1\end{cases}}.\)
\(\frac{x^2+y^2-1+2xy}{x^2-y^2+1+2x}\)
\(=\frac{\left(x+y\right)^2-1}{\left(x-1\right)^2-y^2}\)
\(=\frac{\left(x+y-1\right)\left(x+y+1\right)}{\left(x-1-y\right)\left(x-1+y\right)}\)
\(=\frac{x+y+1}{x-y-1}\)
1) \(\Rightarrow16x^2+24x+9+9x^2-24x+16+4-25x^2=x\)
\(\Rightarrow x=29\)
2)
a) \(=x^2-9-x^2+6x-9=6x-18\)
b) \(=\left(3x-1+2x+1\right)^2=\left(5x\right)^2=25x^2\)
Gọi giá trị trên là : A
Ta có : \(A=x^2+x+2\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{7}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{7}{2}\ge\frac{7}{2}\)
MAX \(A=\frac{7}{2}\Leftrightarrow x+\frac{1}{2}=0\Rightarrow x=\frac{-1}{2}\)