K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2018

gọi ý:

a,b biến đổi làm sao để:

a) áp dụng:  \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)

b) áp dụng:  \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

c) Đánh giá:  \(\left|x-2015\right|^{2015}\ge0\)

                     \(\left(y-2016\right)^{2016}\ge0\)

=>  \(C\ge1\)khi  \(\hept{\begin{cases}x=2015\\y=2016\end{cases}}\)

25 tháng 9 2018

a ) A = | x - 5 | - | x - 7 |

Nhận xét :

| x - 5 | - | x - 7 | < | x - 5 - x + 7 |

=> A < | 2 |

=> A < 2

Dấu "=" xảy ra khi : ( x - 5  ) ( x - 7 ) > 0 

                            TH1 : \(\hept{\begin{cases}x-5>0\\x-7>0\end{cases}}\)

                                 => \(\hept{\begin{cases}x>5\\x>7\end{cases}}\)

                                    => x > 7

                             TH2 : \(\hept{\begin{cases}x-5< 0\\x-7< 0\end{cases}}\)

                                   => \(\hept{\begin{cases}x< 5\\x< 7\end{cases}}\)

                                      => x < 5

Vậy A lớn nhất bằng 2 khi x < 5 hoặc x > 7

b ) B = | 125 - x | + | x - 65 |

Ta có : 

| 125 - x | + | x - 65 | > | 125 - x + x - 65 |

=> B > | 60 |

=> B > 60

Dấu " = " xảy ra khi : ( 125 - x ) ( x - 65 ) > 0

TH1 : \(\hept{\begin{cases}125-x>0\\x-65>0\end{cases}}\)

=> \(\hept{\begin{cases}x< 125\\x>65\end{cases}}\)

=> 65 < x < 125

TH2 : \(\hept{\begin{cases}125-x< 0\\x-65< 0\end{cases}}\)

=> \(\hept{\begin{cases}x>125\\x< 65\end{cases}}\)

=> 125 < x < 65 ( vô lí )

Vậy giá trị lớn nhất của B là 60 khi 65 < x < 125

c ) C = | x - 2015 |2015 + ( y - 2016 )2016 + 1

Nhận xét :

| x - 2015 |2015 > 0 với mọi x

( y - 2016 )2016 > 0 với mọi x

=> | x - 2015 |2015 + ( y - 2016 )2016 > 0 

=> | x - 2015 |2015 + ( y - 2016 )2016 + 1 > 1 

=> C > 1

Dấu "=" xảy ra khi : x - 2015 = 0

                               và y - 2016 = 0

=> x = 2015

      y = 2016

Vậy giá trị nhỏ nhất của C là 1 khi x = 2015 và y = 2016

4 tháng 4 2016

Bai 2; x=1 hoac x= -1 

17 tháng 9 2016

 A=5-3(2x+1)^2

Ta có : (2x+1)^2\(\ge\)0

\(\Rightarrow\)-3(2x-1)^2\(\le\)0

\(\Rightarrow\)5+(-3(2x-1)^2)\(\le\)5

Dấu = xảy ra khi : (2x-1)^2=0

=> 2x-1=0 =>x=\(\frac{1}{2}\)

Vậy : A=5 tại x=\(\frac{1}{2}\)

Ta có : (x-1)^2 \(\ge\)0

=> 2(x-1)^2\(\ge\)0

=>2(x-1)^2+3 \(\ge\)3

=>\(\frac{1}{2\left(x-1\right)^2+3}\)\(\le\)\(\frac{1}{3}\)

Dấu = xảy ra khi : (x-1)^2 =0

=> x = 1

Vậy : B = \(\frac{1}{3}\)khi x = 1

\(\frac{x^2+8}{x^2+2}\)\(\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)

Làm như câu B                   GTNN = 4 khi x =0 

k vs nha

\(A=2\left|x-5\right|-2015\ge-2015\)

\(Min_A=-2015\Leftrightarrow x=5\)

\(B=205-\left|3x-5\right|\le205\)

\(Max_B=205\Leftrightarrow x=\frac{5}{3}\)

30 tháng 7 2017

có cách làm củ thể hơn k bạn

7 tháng 2 2022

1) \(B=-7x^2+9\)

Do \(x^2\ge0\forall x\Rightarrow-7x^2\le0\forall x\)

\(\Rightarrow B=-7x^2+9\le9\)

\(maxB=9\Leftrightarrow x=0\)

2) \(C=2-\left(3x-4\right)^4\)

Do \(\left(3x-4\right)^4\ge0\forall x\Rightarrow-\left(3x-4\right)^4\le0\forall x\)

\(\Rightarrow C=2-\left(3x-4\right)^4\le2\)

\(maxC=2\Leftrightarrow x=\dfrac{4}{3}\)

3) \(D=\dfrac{1}{2}x^2+3\)

Do \(\dfrac{1}{2}x^2\ge0\forall x\Rightarrow D=\dfrac{1}{2}x^2+3\ge3\)

\(minD=3\Leftrightarrow x=0\)

4) \(E=\dfrac{2016}{2-x^2+3}=\dfrac{2016}{-x^2+5}\)

Do \(x^2\ge0\forall x\Rightarrow-x^2+5\le5\forall x\)

\(\Rightarrow E=\dfrac{2016}{-x^2+5}\ge\dfrac{2016}{5}\)

\(minE=\dfrac{2016}{5}\Leftrightarrow x=0\)

7 tháng 2 2022

\(B=-7x^2+9\)

Vì \(-7x^2\le0\forall x\)

\(\Rightarrow-7x^2+9\le9\forall x\)

\(\Rightarrow B_{max}=9\Leftrightarrow-7x^2=0\Leftrightarrow x=0\)

\(C=2-\left(3x-4\right)^4\)

Vì \(-\left(3x-4\right)^4\le0\forall x\)

\(\Rightarrow-\left(3x-4\right)^4+2\le2\forall x\)

\(\Rightarrow C_{max}=2\Leftrightarrow-\left(3x-4\right)^4=0\Leftrightarrow x=\dfrac{4}{3}\)

Nếu tìm GTLN thì câu \(d\) là \(D=-\dfrac{1}{2}x^2+3\)

Vì \(-\dfrac{1}{2}x^2\le0\forall x\)

\(\Rightarrow-\dfrac{1}{2}x^2+3\le3\forall x\)

\(\Rightarrow D_{max}=3\Leftrightarrow-\dfrac{1}{2}x^2=0\Leftrightarrow x=0\)

\(E=\dfrac{2016}{2-x^2+3}=\dfrac{2016}{5-x^2}\)

Vì \(x^2\ge0\forall x\)

\(\Rightarrow5-x^2\le5\forall x\)

\(\Rightarrow E_{min}=5\Leftrightarrow x=\dfrac{2016}{5}\)