Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(A=\left|x+2\right|+\left|x-5\right|=\left|x+2\right|+\left|5-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(A=\left|x+2\right|+\left|5-x\right|\ge\left|x+2+5-x\right|=\left|7\right|=7\)
Dấu " = " khi \(\left\{{}\begin{matrix}x+2\ge0\\5-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\le5\end{matrix}\right.\)
Vậy \(MIN_A=7\) khi \(-2\le x\le5\)
b, Ta có: \(\left\{{}\begin{matrix}\left|2x-1\right|\ge0\\\left|2y+3\right|\ge0\end{matrix}\right.\Leftrightarrow\left|2x-1\right|+\left|2y+3\right|\ge0\)
\(\Leftrightarrow B=\left|2x-1\right|+\left|2y+3\right|-2017\ge-2017\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left|2x-1\right|=0\\\left|2y+3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy \(MIN_B=-2017\) khi \(x=\dfrac{1}{2}\) và \(y=\dfrac{-3}{2}\)
Ta có: \(A=\frac{7x-8}{2x-3}=\frac{1}{2}.\frac{14x-16}{2x-3}=\frac{1}{2}.\frac{14x-21+5}{2x-3}=\frac{1}{2}.\frac{7\left(2x-3\right)+5}{2x-3}\)\(=\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\)
Để A đạt GTLN thì \(\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\) lớn nhất
\(\Rightarrow7+\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow2x-3\) nhỏ nhất hay x nhỏ nhất và x > 0
Vì \(x\inℤ\) nên \(2x-3\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow2x\in\left\{4;8\right\}\)
\(\Rightarrow x\in\left\{2;4\right\}\)
Mà x nhỏ nhất và x > 0 nên x = 2
Thay x = 2 vào A ta được: \(A=\frac{1}{2}.\left(7+\frac{5}{2.2-3}\right)=\frac{1}{2}.12=6\)
Vậy MaxA = 6 tại x = 2.
Dễ thấy D > 0
D có GTLN \(\Leftrightarrow\)( 2x - 3 )2 + 5 có GTNN \(\Leftrightarrow\)( 2x - 3 )2 có GTNN \(\Leftrightarrow\)2x = 3 \(\Leftrightarrow\)x = 1,5
GTLN của D = \(\frac{4}{5}\)khi x = 1,5
\(\left|2x-3\right|\ge0\)
\(\Rightarrow2017-\left|x-3\right|\le2017\)
Vậy giá trị lớn nhất của P là 2017 khi |2x - 3| = 0 <=> x = 3/2
Ta có: \(\left|2x-3\right|\) lớn hơn hoặc bằng 0
=> \(P=2017-\left|2x-3\right|\) < hơn hoặc = 2017
Dấu '=' xảu ra khi: \(2x-3=0\)
=> \(2x=-3\)
=> \(x=-\frac{3}{2}\)