Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
Ta c/m BĐT mạnh hơn \(\frac{1}{x^5-x^2+3xy+6}+\frac{1}{y^5-y^2+3yz+6}+\frac{1}{z^5-z^2+3zx+6}\le\frac{1}{3}\)
Áp dụng BĐT AM-GM ta có:
\(x^5+x+1\ge3x^2\)và \(2x^2+2\ge4x\)
\(\Rightarrow x^5-x^2+6\ge3x+3\)
\(\Rightarrow\frac{1}{x^5-x^2+3xy+6}\le\frac{1}{3(x+xy+1)}\)
\(P\le\frac{1}{3(x+xy+1)}+\frac{1}{3(y+yz+1)}+\frac{1}{3(z+zx+1)}=\frac{1}{3}\)
Ta có: \(6x^2+8xy+11y^2=2\left(x-y\right)^2+\left(2x+3y\right)^2\ge\left(2x+3y\right)^2\)
Tương tự: \(6y^2+8yz+11z^2\ge\left(2y+3z\right)^2\)
\(6z^2+8zx+11x^2\ge\left(2z+3x\right)^2\)
=> \(P\le\frac{x^2+3xy+y^2}{2x+3y}+\frac{y^2+3yz+z^2}{2y+3z}+\frac{z^2+3zx+x^2}{2z+3x}\)
=> \(4P\le\frac{4x^2+12xy+4y^2}{2x+3y}+\frac{4y^2+12yz+4z^2}{2y+3z}+\frac{4z^2+12zx+4x^2}{2z+3x}\)
\(=\frac{\left(2x+3y\right)^2-5y^2}{2x+3y}+\frac{\left(2y+3z\right)^2-5z^2}{2y+3z}+\frac{\left(2z+3x\right)^2-5x^2}{2z+3x}\)
\(=5\left(x+y+z\right)-5\left(\frac{y^2}{2x+3y}+\frac{z^2}{2y+3z}+\frac{x^2}{2z+3x}\right)\)
\(\le5\left(x+y+z\right)-5.\frac{\left(x+y+z\right)^2}{5\left(x+y+z\right)}=4\left(x+y+z\right)\)
Lại có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)với mọi x; y; z
=> \(4P\le4.\sqrt{9}=12\)
=> \(P\le3\)
Dấu "=" xảy ra <=> x = y = z = 1
Vậy max P = 3 đạt tại x = y = z = 1.
\(x^{2011}+x^{2011}+1+...+1\) (2009 số 1) \(\ge2011\sqrt[2011]{x^{4022}}=2011x^2\)
Tương tự:
\(2y^{2011}+2009\ge2011y^2\); \(2z^{2011}+2009\ge2011z^2\)
Cộng vế:
\(2\left(x^{2011}+y^{2011}+z^{2011}\right)+6027\ge2011\left(x^2+y^2+z^2\right)\)
\(\Rightarrow2011\left(x^2+y^2+z^2\right)\le6033\)
\(\Rightarrow x^2+y^2+z^2\le3\)
gọi a là 1 giá trị của biểu thức P, khi đó ta có a = 2xy + 3yz + 4xz
Thay z = 1 - x - y, ta được :
a = 2xy + 3y ( 1 - x - y ) + 4x ( 1 - x - y )
\(\Leftrightarrow4x^2+\left(5y-4\right)x+3y^2-3y+a=0\)
PT có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow\left(5y-4\right)^2-4.4\left(3y^2-3y+a\right)\ge0\)
\(\Leftrightarrow-23y^2+8y+16\ge16a\)
Vì \(-23y^2+8y+16=-23\left(y-\frac{4}{23}\right)^2+\frac{384}{23}\le\frac{384}{23}\)
\(\Rightarrow16a\le\frac{384}{23}\Rightarrow a\le\frac{24}{23}\Rightarrow P\le\frac{24}{23}\)
Vậy GTLN của P là \(\frac{24}{23}\)
quên còn dấu "="
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+z=1\\y=\frac{4}{23}\\x=\frac{4-5y}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{9}{23}\\y=\frac{4}{23}\\z=\frac{10}{23}\end{cases}}}\)