Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\frac{7x-8}{2x-3}=\frac{1}{2}.\frac{14x-16}{2x-3}=\frac{1}{2}.\frac{14x-21+5}{2x-3}=\frac{1}{2}.\frac{7\left(2x-3\right)+5}{2x-3}\)\(=\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\)
Để A đạt GTLN thì \(\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\) lớn nhất
\(\Rightarrow7+\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow2x-3\) nhỏ nhất hay x nhỏ nhất và x > 0
Vì \(x\inℤ\) nên \(2x-3\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow2x\in\left\{4;8\right\}\)
\(\Rightarrow x\in\left\{2;4\right\}\)
Mà x nhỏ nhất và x > 0 nên x = 2
Thay x = 2 vào A ta được: \(A=\frac{1}{2}.\left(7+\frac{5}{2.2-3}\right)=\frac{1}{2}.12=6\)
Vậy MaxA = 6 tại x = 2.
a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)
Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)
Vậy MinA = 11 khi -2 =< x =< 9
b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)
Dấu "=" xảy ra khi x = 1
Vậy MaxB = 3/4 khi x=1
Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)
Vậy \(A_{min}=11\) khi \(2\le x\le9\)
\(\left|3x+2\right|=\left|4x-3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=4x-3\\3x+2=3-4x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=-5\\7x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{1}{7}\end{matrix}\right.\)
\(\left|2+3x\right|=\left|4x-3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2+3x=4x-3\\2+3x=3-4x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{1}{7}\end{matrix}\right.\)
a) Ta có: \(\left|x+3\right|\ge0\forall x\)
\(\Leftrightarrow-\left|x+3\right|\le0\forall x\)
\(\Leftrightarrow-\left|x+3\right|+15\le15\forall x\)
Dấu '=' xảy ra khi |x+3|=0
⇔x+3=0
hay x=-3
Vậy: Giá trị lớn nhất của biểu thức \(A=-\left|x+3\right|+15\) là 15 khi x=-3
b) Ta có: \(\left|x-2\right|\ge0\forall x\)
\(\left|2y+1\right|\ge0\forall y\)
Do đó: \(\left|x-2\right|+\left|2y+1\right|\ge0\forall x,y\)
\(\Leftrightarrow-\left(\left|x-2\right|+\left|2y+1\right|\right)\le0\forall x,y\)
\(\Leftrightarrow-\left|x-2\right|-\left|2y+1\right|\le0\forall x,y\)
\(\Leftrightarrow-\left|x-2\right|-\left|2y+1\right|+1000\le1000\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x-2=0\\2y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\frac{-1}{2}\end{matrix}\right.\)
Vậy: Giá trị lớn nhất của biểu thức \(B=-\left|x-2\right|-\left|2y+1\right|+1000\) là 1000 khi x=2 và \(y=-\frac{1}{2}\)
Câu này mình vừa mới giúp bạn ở bên trên đấy.Bạn xem lại nhé!
\(A=-x^2+4x=-\left(x^2-4x+4\right)+4=4-\left(x-2\right)^2\)
Ta có: \(\left(x-2\right)^2\ge0\Rightarrow4-\left(x-2\right)^2\le4\)
\(\Rightarrow A_{max}=4\Leftrightarrow x=2\)