Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left|2x-1.5\right|\ge0\forall x\in R\)
\(\Rightarrow C=5.5-\left|2x-1.5\right|\le5.5\forall x\in R\)
Dấu "=" xảy ra khi |2x - 1.5| = 0 <=> x = 0,75
Vậy gtln của C LÀ 5.5 tại x = 0.75
tim gt nho nhat cua bieu thuc
M=I 3x+8,4 I -14,2
N=I4x-3 I+I 5y +7,5 I + 17,5
P=Ix-2012 I +I x-2011 I
TC: M min <=>3X+8,4 Min=> MinM=-14,2 với 3X+8,4=0 => x=-2,8
N Min Cũng tương tự vì Trị tuyệt đói luôn dương =>min N=17,5 tương úng khi x=0.75;y=-1.5
P. Ta có : [x-2012]+[x-2011]=[x-2012]+[2011-x] (áp dụng tính chất Giá trị tuyệt đói)
=>MinP =x-2012+2011-x =-1
\(C=\frac{8}{\left(\left|x\right|+2\right)^2+\left|2-y\right|}\le\frac{8}{2^2+0}=2\)
Vậy GTLN của C = 2 khi x = 0 ; y = 2
Ta có :
\(\left|10,2-3x\right|\ge0\)
\(-\left|10,2-3x\right|\le0\)
\(-\left|10,2-3x\right|-14\le-14\)
\(\Rightarrow Max_M=-14\)
A=|x-1006|-|x+1014|
Áp dụng bđt: |a|-|b|<|a-b| ta có:
|a|-|b|<|a-b|
<=>(|a|-|b|)2< (|a-b|)2
<=>a2-2|ab|+b2< a2-2ab+b2
<=>-|ab| < -ab <=> |ab| > ab (luôn đúng)
Dấu "=" xảy ra khi và chỉ khi: ab>0
Áp dụng bđt vào biểu thức: A=|x-1006|-|x+1014|
Ta có:A=|x-1006|-|x+1014| < |x-1006-x-1004|=2010
Vậy Amax=2010 khi x> 1006 ; x< -1014