K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2018

Đặt \(A=x+y+z\)

Theo BĐT cô si, ta có:

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)

Mà \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{7}{10}\Rightarrow x+y+z\ge9-\frac{7}{10}=\frac{83}{10}\)

Vậy \(A_{min}=\frac{83}{10}\). Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{83}{30}\)

Ta có:﴾các số như 14‐x/4‐x đc vt dưới dạng p số nha﴿
14‐x/4‐x=10+4‐x/4‐x=10/4‐x+4‐x/4‐x=﴾10/4‐x﴿+1
Để ﴾10/4‐x﴿+1 đạtGTNN=>10/4‐x đạt GTNN =>4‐x đạt GTLN
mà ‐x<_﴾bé hơn hoặc bằng﴿0
=> 4‐x<_4
Vì 4‐x đạt GTLN =>4‐x=4=>x=0
khi đó, thay vào biểu thức, ta có:
14‐0/4‐0=14/4=3,5
Vậy GTNN của P bằng 3,5<=>x=0

17 tháng 8 2017

\(P=\frac{14-x}{4-x}=\frac{10+4-x}{4-x}=\frac{10}{4-x}+1\)

P đạt giá trị nhỏ nhất khi \(\frac{10}{4-x}\) nhỏ nhất <=> 4-x lớn nhất < 0 <=> 4-x=-1 <=> x=5 

7 tháng 9 2016

Để M có giá trị nguyên thì x - 2 chia hết cho x + 3

=> (x + 3) - 5 chia hét cho x + 3

=> 5 chia hết cho x + 3

=> x + 3 thuộc Ư(5) = {-1;1;-5;5}

Ta có:

x + 3-5-115
x-8-4-22
31 tháng 1 2017

Ta có (x+1)^2\(\ge0với\forall x\)  (y+3)^2\(\ge0\)với\(\forall y\)(bình phương không âm)

=>B=(x+1)^2+(y+3)^2+1\(\ge1\)

31 tháng 1 2017

thanks bn nha !!!:D:D

3 tháng 9 2016

Ta có: (x + 1)2 \(\ge\)0 và (y - 2)2 \(\ge\) 0

=> (x + 1)2 + (y - 2)2 + 9  \(\ge\)9

Đẳng thức xảy ra khi: (x + 1)2 = 0 và (y - 2)2 = 0  => x = -1 và y = 2

Vậy giá trị nhỏ nhất của (x + 1)2 + (y - 2) + 9 là 9 khi x = -1 và y = 2

3 tháng 9 2016

\(A=\left(x+1\right)^2+\left(y-2\right)^2+9\)

Có: \(\left(x+1\right)^2\ge0;\left(y-2\right)^2\ge0\)

\(\left(x+1\right)^2+\left(y-2\right)^2+9\ge9\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\) .

Vậy: \(Min_A=9\) tại \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

2 tháng 3 2017

ta thấy:  (x-1)^2 >hoặc =0

             (y+3)^2 >hoặc = 0

suy ra (x-1)^2+ (y+3)^2 > hoac = 0

suy ra (x-1)^2+ (y+3)^2+ 5 > hoặc = 5

Để M đạt giá trị nhỏ nhất khi và chỉ khi M=5

Vậy M đạt giá trị nhỏ nhất =5