Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cả 4 đều không đúng:
A. Sai khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và nhiều trường hợp khác
A. Sai khi \(\left(a;b\right)=\left(1;1\right)\) và nhiều trường hợp khác
C. Sai khi \(\left(x;y\right)=\left(-1;-1\right)\) và nhiều trường hợp khác
D. Sai khi \(\left(x;y;z\right)=\left(-1;-1;1\right)\) và nhiều trường hợp khác
Lời giải:
a)
Áp dụng BĐT Bunhiacopxky:
\((y-2x)^2\leq (16y^2+36x^2)(\frac{1}{16}+\frac{1}{9})=9.\frac{25}{144}\)
\(\Rightarrow \frac{-5}{4}\leq y-2x\leq \frac{5}{4}\Rightarrow \frac{15}{4}\leq y-2x+5\leq \frac{25}{4}\)
Vậy $A_{\min}=\frac{15}{4}$ và $A_{\max}=\frac{25}{4}$
b)
Áp dụng BĐT Bunhiacopxky:
\((2x-y)^2\leq (\frac{x^2}{4}+\frac{y^2}{9})(16+9)=25\)
\(\Rightarrow -5\leq 2x-y\leq 5\Leftrightarrow -7\leq 2x-y-2\leq 3\)
Vậy $B_{min}=-7; B_{\max}=3$
Câu 1: ĐK: $x\neq -1$
Nếu $x\geq 0$ thì:
BPT \(\Leftrightarrow -2\leq \frac{2-3x}{x+1}\leq 2\Rightarrow \left\{\begin{matrix} x\leq 4\\ x\geq 0\end{matrix}\right.\Rightarrow x\in\left\{0;1;2;3;4\right\}\)
Nếu $x< 0$ thì:
BPT \(\Leftrightarrow -2\leq \frac{2+3x}{x+1}\leq 2\)
Trường hợp $-1< x< 0$ thì $\Leftrightarrow -2(x+1)\leq 2+3x\leq 2(x+1)$
$\Leftrightarrow x\geq \frac{-4}{5}$ và $x\leq 0$. Kết hợp với ĐK $-1< x< 0$ nên không có giá trị $x$ nguyên thỏa mãn
Trường hợp $x< -1$ thì $\Leftrightarrow -2(x+1)\geq 2+3x\geq 2(x+1)$
$\Leftrightarrow x\leq \frac{-4}{5}$ và $x\geq 0$ (vô lý)
Do đó có 5 giá trị $x$ nguyên thỏa mãn.
Đáp án B
Câu 2:
VTCP của $\Delta_1$: $\overrightarrow{u_1}(m+1, -1)$
VTPT của $\Delta_2$: $\overrightarrow{n_2}(m,-6)$
Để 2 đường thẳng song song với nhau thì: $\overrightarrow{u_1}\perp \overrightarrow{n_2}$
$\Leftrightarrow m(m+1)+(-1)(-6)=0$
$\Leftrightarrow m^2+m+6=0$
$\Leftrightarrow (m+\frac{1}{2})^2=-\frac{23}{4}< 0$ (vô lý- loại)
Vậy không có giá trị m thỏa mãn
Đáp án B.
Ta có \(\left(\frac{x^3}{y^2+z}+\frac{y^3}{z^2+x}+\frac{z^3}{x^2+y}\right)\left[x\left(y^2+x\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\ge\left(x^2+y^2+z^2\right)^2\left(1\right)\)
Ta chứng minh \(\left(x^2+y^2+z^2\right)^2\ge\frac{4}{5}\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\)
\(\Leftrightarrow5\left(x^2+y^2+z^2\right)^2\ge4\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\left(2\right)\)
Thật vậy \(\hept{\begin{matrix}3\left(\Sigma x^2\right)^2\ge\left(\Sigma x^2\right)\cdot\Sigma x^2=4\Sigma zx\left(3\right)\\2\left(\Sigma x^2\right)^2\ge4\Sigma xy^2\left(4\right)\end{matrix}\Leftrightarrow2\left(\Sigma x^2\right)^2\ge\Sigma xy^2\left(x+y+z\right)}\)(*)
Từ các Bất Đẳng Thức \(\hept{\begin{cases}\frac{x^4-2x^3z+z^2x^2}{2}\ge0\\\frac{x^4+y^4+2x^4}{4}\ge xyz^2\end{cases}}\)=> (*) đúng
Như vậy (3),(4) đúng => (2) đúng
Từ đó suy ra \(T\ge\frac{4}{5}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)
\(A=\left(x-8\right)^2+2005\)
Ta có: \(\left(x-8\right)^2\ge0\forall x\in Z\)
\(\Rightarrow\left(x-8\right)^2+2005\ge2005\forall x\in Z\)
Dấu '=' xảy ra khi
\(\left(x-8\right)^2=0\Leftrightarrow x-8=0\Leftrightarrow x=8\)
Vậy: giá trị nhỏ nhất của biểu thức \(A=\left(x-8\right)^2+2005\) là 2005 khi x=8
\(B=\left(x-2\right)^2+\left(y-1\right)^2+3\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\in Z\)
\(\left(y-1\right)^2\ge0\forall y\in Z\)
Do đó: \(\left(x-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\in Z\)
\(\Rightarrow\left(x-2\right)^2+\left(y-1\right)^2+3\ge3\forall x,y\in Z\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(x-2\right)^2+\left(y-1\right)^2+3\) là 3 khi x=2 và y=1
\(C=\left|x-5\right|+\left(x-y\right)^2+10\)
Ta có: \(\left|x-5\right|\ge0\forall x\in Z\)
\(\left(x-y\right)^2\ge0\forall x,y\in Z\)
Do đó: \(\left|x-5\right|+\left(x-y\right)^2\ge0\forall x,y\in Z\)
⇒\(\left|x-5\right|+\left(x-y\right)^2+10\ge10\forall x,y\in Z\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left|x-5\right|=0\\\left(x-y\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-5=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\5-y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=5\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(C=\left|x-5\right|+\left(x-y\right)^2+10\) là 10 khi x=5 và y=5
\(D=\left|x-2\right|+\left|y+5\right|-10\)
Ta có: \(\left|x-2\right|\ge0\forall x\in Z\)
\(\left|y+5\right|\ge0\forall y\in Z\)
Do đó: \(\left|x-2\right|+\left|y+5\right|\ge0\forall x,y\in Z\)
\(\Rightarrow\left|x-2\right|+\left|y+5\right|-10\ge-10\forall x,y\in Z\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left|x-2\right|=0\\\left|y+5\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-5\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(D=\left|x-2\right|+\left|y+5\right|-10\) là -10 khi x=2 và y=-5
Cho tam giác ABC có AB < AC, tia phân giác góc BAC cắt BC tại D. Trên AB lấy điểm E sao cho AE = AC.
a) DE = BC
b) AB vuông góc EC
c) Vẽ BH vuông góc với E. Chứng tỏ BH // AD.
Mong bn lm nhanh và chính xác.