K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2017

\(B+1=\frac{4x+3+x^2+1}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}\ge0\Rightarrow B\ge-1\\ \)

GTNN B=-1 khi x=-2

12 tháng 1 2017

\(A-B=x^4-x^2+3=\left(x^2-\frac{1}{2}\right)^2+3-\frac{1}{4}\)

GTLN không có (muốn có thêm DK cho x)

GTNN=3-1/4=11/4 khi \(x=+-\frac{\sqrt{2}}{2}\)

12 tháng 3 2016

Tổng quát: Nhân 2 lên rồi áp dụng hằng đẳng thức (a+b)^2 và (a-b)^2 và hằng đẳng thức mở rộng (a+b+c)^2

1 tháng 1 2016

A=a^3+b^3=a^2+b^2-ab+ab=a^2+b^2

thay a=1-b vào biểu thức trên ta có:

A=(1-b)^2+b^2=1-2b+2b^2=2(b2-b+0,5)=2(b2-2x0,5xb+0,25+0,25)=2(b-0,5)2+0,5

=>Amin =0.5<=>a=b=0,5

tick nha!

 

 

3 tháng 6 2021

thay k=0 vào pt ta được 

\(9x^2-25-0^2-2.0x=0\)

=>\(9x^2-25=0\)

=>\(\left(3x-5\right)\left(3x+5\right)=0\)

=>\(3x+5=0=>x=\dfrac{-5}{3}\)

hoặc \(3x-5=0=>x=\dfrac{5}{3}\)

8 tháng 6 2021

Thay `k=0` vào pt ta có:

`9x^2-25-0-0=0`

`<=>9x^2=25`

`<=>x^2=25/9`

`<=>x=+-5/3`

`b)x=-1` làm nghiệm nên ta thay `x=-1` vào pt thì pt =0

`=>9.1-25-k^2-2k(-1)=0`

`<=>-16-k^2+2k=0`

`<=>k^2-2k+16=0`

`<=>(k-1)^2+15=0` vô lý

Vậy khong có giá trị của k thỏa mãn đề bài

8 tháng 6 2021

mình cảm ơn ạ<3

 

25 tháng 10 2019

\(A=x^2+4x+100\)

\(A=x^2+2.x.2+2^2+96\)

\(A=\left(x+2\right)^2+96\)

           \(\left(x+2\right)^2+96\le0\)

           \(\left(x+2\right)^2+96\le96\)

    \(\Leftrightarrow A\le96\)

\(A_{min}\Leftrightarrow A=10\)

Dấu "=" xảy ra : \(\left(x+2\right)^20\)

                             \(x+2=0\)

                             \(x=-2\)

     

25 tháng 10 2019

Thay hộ mik cái dấu \(\le\)thành dấu \(\ge\)vs ak

22 tháng 10 2020

đặt y = 1/x suy ra y <=1,

ta có P = 1 -2y+2016y^2 

Tự làm tiếp nhé

12 tháng 9 2021

a) \(A=x^2+3x+4=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

\(minA=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{3}{2}\)

b) \(B=2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(minB=\dfrac{7}{8}\Leftrightarrow x=\dfrac{1}{4}\)

c) \(C=5x^2+2x-3=5\left(x+\dfrac{1}{5}\right)^2-\dfrac{16}{5}\ge-\dfrac{16}{5}\)

\(minC=-\dfrac{16}{5}\Leftrightarrow x=-\dfrac{1}{5}\)

d) \(D=4x^2+4x-24=\left(2x+1\right)^2-25\ge-25\)

\(minD=-25\Leftrightarrow x=-\dfrac{1}{2}\)

e) \(E=x^2+6x-11=\left(x+3\right)^2-20\ge-20\)

\(minE=-20\Leftrightarrow x=-3\)

f) \(G=\dfrac{1}{4}x^2+x-\dfrac{1}{3}=\left(\dfrac{1}{2}x+1\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)

\(minG=-\dfrac{4}{3}\Leftrightarrow x=-2\)

12 tháng 9 2021

\(A=x^2+3x+4=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\)

Do \(\left(x+\dfrac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow A=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

\(minA=\dfrac{7}{4}\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)

Mấy câu còn lại làm tương tự nhé em^^