K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

/x-2016/+/2007-x/\(\ge\)/x-2016+2007-x/

                          \(\ge\)/-2016+2007/

                          \(\ge\)/-9/=9

=> /x-2016/+/2007-x/ có giá trị nhỏ nhất là 9

17 tháng 2 2017

là bằng 1

9 tháng 2 2018

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(A\ge\left|x-2016+2017-x\right|=1\)
Vậy minA=1

9 tháng 2 2018

Ta có \(A=\left|x-2006\right|+\left|2007-x\right|\)

\(=\left|2006-x\right|+\left|x-2007\right|\)

Ta có \(A=\left|2006-x\right|+\left|x-2007\right|\ge\left|2006-x+x-2007\right|=1\)

Dấu "=" xảy ra khi và chỉ \(2006\le x\le2007\)

Vậy GTNN A=1 khi \(2006\le x\le2007\)

24 tháng 7 2016

Ta có :

\(A=\left|x-2006\right|+\left|2007-x\right|\ge\left|x-2006+2007-x\right|\)

\(\Rightarrow A\ge1\)

\(\Rightarrow A_{min}=1\)

\(\Leftrightarrow\left(x-2006\right)\left(2007-x\right)\ge0\)

Ta có bảng xét dấu :

x x-2006 ( x - 2006 )( 2007 - x ) 2006 2007 0 0 2007-x 0 _ _ + + + + 0 0 + _ _

\(\Rightarrow2006\le x\le2007\)

20 tháng 3 2017

2005<x<2008

8 tháng 2 2020

Ta có : \(A=\left|x-2006\right|+\left|2007-x\right|\)

\(=\left|2006-x\right|+\left|x-2007\right|\)

Ta có : \(A=\left|x-2006\right|+\left|2007-x\right|\ge\left|2006-x+x-2007\right|=1\)

Dấu " = " xảy ra khi và chỉ \(2006\le x\le2007\)

Vậy GTNN \(A=1\)khi \(2006\le x\le2007\)

13 tháng 12 2018

\(A=\left|x-2006\right|+\left|2007-x\right|\)

\(\ge\left|x-2006+2007-x\right|=1\)

Dấu "=" xảy ra khi \(\left(x-2006\right)\left(2007-x\right)\ge0\Leftrightarrow2006\le x\le2007\)