Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)
\(=-\left(x+1\right)^2+4\le4\)
Dấu ''='' xảy ra khi x = -1
Vậy GTLN là 4 khi x = -1
b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)
\(=-\left(2x-1\right)^2-2\le-2\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTLN B là -2 khi x = 1/2
c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)
\(=-\left(x-1\right)^2-14\le-14\)
Vâỵ GTLN C là -14 khi x = 1
Bài 8 :
b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 3
Vậy GTNN B là 2 khi x = 3
c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu ''='' xảy ra khi x = 1/2
Vậy ...
c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)
Dấu ''='' xảy ra khi x = 6
Vậy ...
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Bài 1:
\(A=x^2+6x+9+x^2-10x+25\)
\(=2x^2+4x+34\)
\(=2\left(x^2+2x+17\right)\)
\(=2\left(x+1\right)^2+32>=32\forall x\)
Dấu '=' xảy ra khi x=-1
Ta có:
\(B=\dfrac{x^2-2x+2016}{x^2}\left(x\ne0\right)\)
\(B=\dfrac{x^2}{x^2}-\dfrac{2x}{x^2}+\dfrac{2016}{x^2}\)
\(B=1-\dfrac{2}{x}+\dfrac{2016}{x^2}\)
\(B=2016\left(\dfrac{1}{x^2}-\dfrac{1}{2016}\cdot\dfrac{2}{x}+\dfrac{1}{2016}\right)\)
\(B=2016\cdot\left(\dfrac{1}{x^2}-2\cdot\dfrac{1}{2016}\cdot\dfrac{1}{x}+\dfrac{1}{2016}\right)\)
\(B=2016\left(\dfrac{1}{x^2}-2\cdot\dfrac{1}{2016}\cdot\dfrac{1}{x}+\dfrac{1}{4064256}+\dfrac{2015}{4064256}\right)\)
\(B=2016\left[\dfrac{1}{x^2}-2\cdot\dfrac{1}{2016}\cdot\dfrac{1}{x}+\dfrac{1}{4064256}\right]+2016\cdot\dfrac{2015}{4064256}\)
\(B=2016\cdot\left(\dfrac{1}{x}-\dfrac{1}{2016}\right)^2+\dfrac{2015}{2016}\)
Ta có: \(2016\cdot\left(\dfrac{1}{x}-\dfrac{1}{2016}\right)^2\ge0\forall x\)
\(\Rightarrow2016\cdot\left(\dfrac{1}{x}-\dfrac{1}{2016}\right)^2+\dfrac{2015}{2016}\ge\dfrac{2015}{2016}\forall x\)
Dấu "=" xảy ra khi:
\(2016\cdot\left(\dfrac{1}{x}-\dfrac{1}{2016}\right)^2+\dfrac{2015}{2016}=\dfrac{2015}{2016}\)
\(\Leftrightarrow2016\cdot\left(\dfrac{1}{x}-\dfrac{1}{2016}\right)^2=0\)
\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{2016}=0\)
\(\Leftrightarrow\dfrac{1}{x}=\dfrac{1}{2016}\)
\(\Leftrightarrow x=2016\left(tm\right)\)
Vậy: \(B_{min}=\dfrac{2015}{2016}\Leftrightarrow x=2016\)
Em nghĩ khi càng lớn thì B càn nhỏ ạ vì nếu thay x = 3 vào B thì giá trị của B gần bằng 224 còn nếu x = 10 thì B là 20,96 nên giá trị x = 1 chưa phải là GTNN của B ạ
BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4
MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2
=>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2
=>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2
b,A=y(y+1)(y+2)(y+3)
=>A =[y(y+3)] [(y+1)(y+2)]
=>A=(y2+3y) (y2+3y+2)
Đặt X=y2+3y+1
=>A=(X+1)(X-1)
=>A=X2-1
=>A=(y2+3y+1)2-1
MÀ (y2+3y+1)2>=0 với mọi giá trị của y
=>(y2+3y+1)2-1>=-1
Vậy GTNN của Alà -1
c,B=x3+y3+z3-3xyz
=>B=(x3+y3)+z3-3xyz
=>B=(x+y)3-3xy(x+y)+z3-3xyz
=>B=[(x+y)3+z3]-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)