Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Phạm Hồng Ánh - Toán lớp 6 - Học toán với OnlineMath
BẠN THAM KHẢO
Đặt A = \(\frac{ab}{a+b}=\frac{10a+b}{a+b}=\frac{1a+b+9a}{a+b}=1+\frac{9a}{a+b}=1+\frac{9:a}{(a+b):a}=1+\frac{9}{a+\frac{b}{a}}\)
Để A đạt giá trị nhỏ nhất => \(\frac{9}{a+\frac{b}{a}}\)nhỏ nhất =>\(a+\frac{b}{a}\)lớn nhất => b = 9 , a = 1
Vậy Amin = \(\frac{19}{1+9}=\frac{19}{10}=1,9\)
bn tham khảo nha : https://olm.vn/hoi-dap/question/93342.html
Đặt A= \(\frac{ab}{a+b}=\frac{10a+b}{a+b}=1+\frac{9}{\frac{a+b}{a}}=1+\frac{9}{1+\frac{b}{a}}\)
Để A có giá trị nhỏ nhất thì \(\frac{9}{1+\frac{b}{a}}\) nhỏ nhất
=> \(1+\frac{b}{a}\) lớn nhất
=> \(\frac{b}{a}\) lớn nhất
=> b lớn nhất, a nhỏ nhất
=> b=9; a=1
Vậy A nhỏ nhất= \(\frac{19}{1+9}=1,9\)
Đặt A=\(\frac{ab}{a+b}\)
=> A=\(\frac{10a+b}{a+b}=\frac{\left(a+b\right)9a}{a+b}=1+\frac{9a}{a+b}=1+\frac{9}{1+\frac{b}{a}}\)
Để A min thì \(\frac{9}{1+\frac{b}{a}}\)min
Khi 1+\(\frac{b}{a}\)max <=> \(\frac{b}{a}\)max
<=>bmax và amin
Mà a,b thuộc N; 0<a\(\le\)9; b\(\le\)9
Nên amin=1; bmax=9
Vậy...