Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x=b+c-a,y=a+c-b,z=a+b-c\) . Khi đó x,y,z >0 và \(a=\frac{y+z}{2},b=\frac{x+z}{2},c=\frac{x+y}{2}\)
Vậy \(P=\frac{2y+2z}{x}+\frac{9x+9z}{2y}+\frac{8x+8y}{z}=\left(\frac{2y}{x}+\frac{9x}{2y}\right)+\left(\frac{2z}{x}+\frac{8x}{z}\right)+\left(\frac{9z}{2y}+\frac{8y}{z}\right)\)
\(\ge2\sqrt{9}+2\sqrt{16}+2\sqrt{36}\). Dấu '=' xảy ra khi:
\(\hept{\begin{cases}\frac{2y}{x}=\frac{9x}{2y}\\\frac{2z}{x}=\frac{8x}{z}\\\frac{9z}{2y}=\frac{8y}{z}\end{cases}\Leftrightarrow\hept{\begin{cases}4y^2=9x^2\\2z^2=8x^2\\9z^2=8y^2\end{cases}}}\Leftrightarrow\hept{\begin{cases}x,y,z>0\\2x=z\\2y=3x;3z=4y\end{cases}}\)
Đặt \(x=b+c-a\) , \(y=a+c-b\), \(z=a+b-c\) thì x , y , z > 0
Ta có : \(\left\{{}\begin{matrix}b+c-a=x\\a+c-b=y\\a+b-c=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{z+y}{2}\\b=\frac{x+z}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)
Vậy \(P=\frac{2y+2z}{x}+\frac{9z+9x}{2y}+\frac{8x+8y}{z}\)
\(=\left(\frac{2y}{x}+\frac{9x}{2y}\right)+\left(\frac{2z}{x}+\frac{8x}{z}\right)+\left(\frac{9z}{2y}+\frac{8y}{z}\right)\ge2\sqrt{9}+2\sqrt{16}+2\sqrt{36}=26\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\frac{2y}{x}=\frac{9x}{2y}\\\frac{2z}{x}=\frac{8x}{z}\\\frac{9z}{2y}=\frac{8y}{z}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y^2=9x^2\\2z^2=8x^2\\9z^2=8y^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{z}{2}\\y=\frac{3}{2}x\\z=\frac{4}{3}y\end{matrix}\right.\)
Vậy giá trị nhỏ nhất của biểu thức P là 26 khi và chỉ khi \(\left\{{}\begin{matrix}x=\frac{z}{2}\\y=\frac{3}{2}x\\z=\frac{4}{3}y\end{matrix}\right.\)
Chúc bạn học tốt !!
Đặt: \(\hept{\begin{cases}b+c-a=2x\\c+a-b=2y\\a+b-c=2z\end{cases}}\Rightarrow x;y;z>0\text{ và }\hept{\begin{cases}a=y+z\\b=z+x\\c=x+y\end{cases}}\)
Áp dụng AM - GM, ta có:
\(2P=4\left(\frac{y+z}{x}\right)+9\left(\frac{x+z}{y}\right)+16\left(\frac{x+y}{z}\right)\)
\(=\left(4\frac{y}{x}+9\frac{x}{y}\right)+\left(4\frac{z}{x}+16\frac{x}{z}\right)+\left(9\frac{x}{y}+16\frac{x}{z}\right)\ge12+16+24=52\Rightarrow P\ge26\)
\(Đ\text{T}\Leftrightarrow3z=4y=6x\)
\(P=\frac{a^2}{\left(a+b\right)^2}+\frac{b^2}{\left(b+c\right)^2}+\frac{c}{4a}\)
\(P=\frac{1}{\left(1+\frac{b}{a}\right)^2}+\frac{1}{\left(1+\frac{c}{b}\right)}+\frac{c}{4a}\)
Ta đặt \(\frac{b}{a}=x;\frac{c}{b}=y\Rightarrow\frac{c}{a}=xy\)
\(P=\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+\frac{xy}{4}\)
Lại có \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}\ge\frac{1}{xy+1}\)
Thật vậy, bđt trên tương đương với:
\(\left(xy+1\right)\left[\left(1+x\right)^2+\left(1+y\right)^2\right]\ge\left(1+x\right)^2\left(1+y\right)^2\)
\(\Leftrightarrow\left(xy+1\right)\left(x^2+y^2+2x+2y+2\right)\ge\left(x^2+2x+1\right)\left(y^2+2y+1\right)\)
\(\Leftrightarrow x^2y+y^2x-x^2y^2-2xy+1\ge0\)
\(\Leftrightarrow xy\left(x-y\right)^2+\left(xy-1\right)^2\ge0\)luôn đúng
Suy ra: \(P\ge\frac{1}{xy+1}+\frac{xy}{4}=\frac{1}{xy+1}+\frac{xy+1}{4}-\frac{1}{4}\)
\(P\ge2\sqrt{\frac{1}{xy+1}\frac{xy+1}{4}}-\frac{1}{4}\left(AM-GM\right)\)
\(=1-\frac{1}{4}=\frac{3}{4}\)
Đẳng thức xảy ra khi a=b=c=1
cái này bọn mik làm rồi này, cậu chia cả tử và mẫu cho a^2 ;b^2(lần lượt nhé và chỉ 2 phân thức đầu thôi)
sau đó
rồi cậu rút gọn mẫu và đặt b/a=x;c/b=y=> c/a=xy
rồi ... cô si các kiểu
bài này chi đề xuất để biết thêm chi tiết liên hệ với đào khánh chi thông minh hok giỏi nhất đội tuyển toán trường THCS 14-10
Dự đoán \(MinP=\frac{3}{4}\)khi a = b = c
Ta có: \(\frac{c}{4a}=\frac{c^2}{4ca}\ge\frac{c^2}{\left(c+a\right)^2}\)(Theo BĐT AM - GM)
Nên ta cần chứng minh \(\frac{a^2}{\left(a+b\right)^2}+\frac{b^2}{\left(b+c\right)^2}+\frac{c^2}{\left(c+a\right)^2}\ge\frac{3}{4}\)
Ta có bất đẳng thức quen thuộc sau: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)(BĐT Bunyakovsky dạng phân thức)
Áp dụng, ta được: \(\frac{a^2}{\left(a+b\right)^2}+\frac{b^2}{\left(b+c\right)^2}+\frac{c^2}{\left(c+a\right)^2}\ge\frac{1}{3}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)^2\)
Đến đây, ta cần chỉ ra rằng: \(\frac{1}{3}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)^2\ge\frac{3}{4}\)
\(\Leftrightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\ge\frac{3}{2}\)
Ta viết bất đẳng thức cần chứng minh thành \(\frac{1}{\left(1+\frac{b}{a}\right)^2}+\frac{1}{\left(1+\frac{c}{b}\right)^2}+\frac{1}{\left(1+\frac{a}{c}\right)^2}\ge\frac{3}{4}\)
Đặt \(x=\frac{b}{a};y=\frac{c}{b};z=\frac{a}{c}\)khi đó xyz = 1 và ta cần chứng minh \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+\frac{1}{\left(1+z\right)^2}\ge\frac{3}{4}\)
Lại đặt \(x=\frac{np}{m^2};y=\frac{mp}{n^2};z=\frac{mn}{p^2}\)(m, n, p > 0). Khi đó bất đẳng thức được viết lại thành:
\(\frac{1}{\left(1+\frac{np}{m^2}\right)^2}+\frac{1}{\left(1+\frac{mp}{n^2}\right)^2}+\frac{1}{\left(1+\frac{mn}{p^2}\right)^2}\ge\frac{3}{4}\)\(\Leftrightarrow\frac{m^4}{\left(m^2+np\right)^2}+\frac{n^4}{\left(n^2+mp\right)^2}+\frac{p^4}{\left(p^2+mn\right)^2}\ge\frac{3}{4}\)
Áp dụng bất đẳng thức Bunyakovsky dạng phân thức thì được: \(\frac{m^4}{\left(m^2+np\right)^2}+\frac{n^4}{\left(n^2+mp\right)^2}+\frac{p^4}{\left(p^2+mn\right)^2}\)\(\ge\frac{\left(m^2+n^2+p^2\right)^2}{\left(m^2+np\right)^2+\left(n^2+mp\right)^2+\left(p^2+mn\right)^2}\)
Và ta cần chứng minh \(\frac{\left(m^2+n^2+p^2\right)^2}{\left(m^2+np\right)^2+\left(n^2+mp\right)^2+\left(p^2+mn\right)^2}\ge\frac{3}{4}\)
\(\Leftrightarrow m^4+n^4+p^4+5\left(m^2n^2+n^2p^2+p^2m^2\right)\ge6mnp\left(m+n+p\right)\)
Ta có: \(m^4+n^4+p^4+5\left(m^2n^2+n^2p^2+p^2m^2\right)\ge\)\(\left(m^2n^2+n^2p^2+p^2m^2\right)+5\left(m^2n^2+n^2p^2+p^2m^2\right)\)\(=6\left(m^2n^2+n^2p^2+p^2m^2\right)\)\(\ge6mnp\left(m+n+p\right)\)
Vậy bất đẳng thức được chứng minh.
Đẳng thức xảy ra khi a = b = c
\(M=\frac{\left(a+1\right)^2+2a}{a\left(a+1\right)}+\frac{\left(b+1\right)^2+2b}{b\left(b+1\right)}+\frac{\left(c+1\right)^2+2c}{c\left(c+1\right)}\)
\(M=\frac{a+1}{a}+\frac{b+1}{b}+\frac{c+1}{c}+2\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
\(M=3+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+2\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
\(M\ge3+\frac{9}{a+b+c}+2\left(\frac{9}{a+b+c+3}\right)\ge3+3+3=9\)
Dấu "=" xảy ra khi a=b=c=1
GTNN=26 NHA BẠN