Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT trị tuyệt đối:
\(M=\left|x-2019\right|+\left|2021-x\right|+2020\left|x-2020\right|\)
\(M\ge\left|x-2019+2021-x\right|+2020\left|x-2020\right|=2+2020\left|x-2020\right|\ge2\)
\(\Rightarrow M_{min}=2\) khi \(\left\{{}\begin{matrix}\left(x-2019\right)\left(2021-x\right)\ge0\\\left|x-2020\right|=0\end{matrix}\right.\) \(\Rightarrow x=2020\)
Ta có :
A = x4 - 2x2 + x2 + 2x + 1 + 2019
A = ( x2 - 1 )2 + ( x + 1 )2 + 2019 \(\ge\)2019
Vậy GTNN của A là 2019 \(\Leftrightarrow\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}\Leftrightarrow x=-1}\)
\(M=x^2+5y^2-4xy+2x-8y+2021\)
\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-4y+4\right)+2016\)
\(=\left(x-2y+1\right)^2+\left(y-2\right)^2+2016\ge2016\)
Vậy GTNN của M là 2016 đạt đươc tại \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
A = \(\dfrac{x^2-2x+2020}{2021x^2}\)
= \(\dfrac{2020x^2-2.2020.x+2020^2}{2021.2020x^2}\)
\(=\dfrac{2019x^2}{2021.2020x^2}+\dfrac{x^2-2.2020.x+2020^2}{2021.2020x^2}\)
= \(\dfrac{2019}{2021.2020}+\dfrac{\left(x-2020\right)^2}{2021.2020x^2}\ge\dfrac{2019}{2021.2020}\)
Dấu "=" xảy ra <=> x - 2020 = 0
<=> x = 2020
Vậy minA = \(\dfrac{2019}{2021.2020}\)đạt được tại x = 2020
B=|x-2020|+|2021-x|>=|x-2020+2021-x|=1
Dấu = xảy ra khi 2020<=x<=2021