Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=|4x-1/4|+2016
Ta có: |4x-1/4|>=0
=>|4x-1/4|+2016>=2016 Hay A>=2016
Nên giá trị nhỏ nhất của A là 2016 khi
4x-1/4=0
4x=0+1/4
4x=1/4
x=1/4:4
x=1/16
Vậy GTNN của A là 2016 khi x=1/16
B=2014-|3x-1/5|
Ta có: |3x-1/5|>=0
2014-|3x-1/5|<=2014 hay B<=2014
Nên GTLN của B là 2014 khi:
3x-1/5=0
3x=0+1/5
3x=1/5
x=1/5:3
x=1/15
Vậy GTNN của B là 2014 khi x=1/15
GTTĐ luôn >= 0
Áp dụng ta có
A = l 4x -1/4l + 2016 Nhỏ hơn bằng 0 + 2014 = 2014
Vậy GTNN của A là 2014 khi 4x - 1/4 = 0 => x = ...
TA có
B = 2014 - l 3x - 1/5l lớn hơn bằng 2014 - 0 = 2014
Vậy GTLN là 2014 khi 3x - 1/5 = 0
a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)
nên Dấu '=' xảy ra khi x-2=0
hay x=2
Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2
Ta có: 5|1 - 4x| \(\ge\)0 \(\forall\)x
=> 5|1 - 4x| - 1 \(\ge\)-1 \(\forall\)x
hay M \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 1 - 4x = 0 <=> x = 1/4
Vậy Min M = -1 <=> x = 1/4
\(\text{Ta có : }M=5\left|1-4x\right|\ge0\forall x\)
\(\Rightarrow M=5\left|1-4x\right|-1\ge-1\forall x\)
\(\text{Vậy Min}_{\text{M}}=-1\Leftrightarrow\left|1-4x\right|=0\Leftrightarrow x=\frac{1}{4}\)
giá trị nhỏ nhất của biểu thức : A = |2x-3 |+ 1/2*|4x-1| là \(\frac{5}{2}\)