Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : C = (x + 1).(x + 2).(x + 3).(x + 4)
=> C = [(x + 1).(x + 4)].[(x + 2).(x + 3)]
=> C = [x2 + 5x + 4] . [x2 + 5x + 6]
Đặt t = x2 + 5x + 5
Khi đó t - 1 = x2 + 5x + 4 , t + 1 = x2 + 5x + 6
Nên C = (t - 1)(t + 1) = t2 - 1 = (x2 + 5x + 5)2 - 1
Mà (x2 + 5x + 5)2 \(\ge0\forall x\)
Do đó (x2 + 5x + 5)2 - 1 \(\ge-1\forall x\)
Vậy GTNN của C là :
a) Đặt \(A=x^2-2x+1\)
Ta có: \(A=x^2-2x+1=\left(x-1\right)^2\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A_{min}=0\)
Dấu "=" xảy ra khi: \(x-1=0\)
\(\Leftrightarrow x=1\)
Vậy \(A_{min}=0\)\(\Leftrightarrow\)\(x=1\)
b) Ta có: \(M=x^2-3x+10\)
\(\Leftrightarrow M=\left(x^2-3x+\frac{9}{4}\right)+\frac{31}{4}\)
\(\Leftrightarrow M=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\forall x\)
\(\Rightarrow\)\(M_{min}=\frac{31}{4}\)
Dấu "=" xảy ra khi: \(x-\frac{3}{2}=0\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy \(M_{min}=\frac{31}{4}\)\(\Leftrightarrow\)\(x=\frac{3}{2}\)
a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2
Vậy MinA=2 \(\Leftrightarrow\)x=2
b) B= -(x-1)2-(2y+1)2+7 \(\le\)7
Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)
Vậy MaxB=7 ....
\(A=x^2+4y^2-2xy+4x-10y+2020.\)
\(=\left(x^2-2xy+y^2\right)+\left(3y^2-6y+3\right)+\left(4x-4y\right)+2017\)
\(=\left(x-y\right)^2+3\left(y-1\right)^2+4\left(x-y\right)+2017\)
\(=\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]+3\left(y-1\right)^2+2013\)
\(=\left(x-y+2\right)^2+3\left(y-1\right)^2+2013\)
\(A_{min}=2013\Leftrightarrow\hept{\begin{cases}\left(x-y+2\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y+2=0\\y=1\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
\(B=8x^2+y^2-4xy-12x+2y+30\)
\(=\left(4x^2-4xy+y^2\right)+\left(4x^2-8x+4\right)-\left(4x-2y\right)+26\)
\(=\left(2x-y\right)^2+4\left(x-1\right)^2-2\left(2x-y\right)+26\)
\(=\left[\left(2x-y\right)^2-2\left(2x-y\right)+1\right]+4\left(x-1\right)^2+25\)
\(=\left(2x-y-1\right)^2+4\left(x-1\right)^2+25\)
\(\Rightarrow B_{min}=25\)\(\Leftrightarrow\hept{\begin{cases}\left(2x-y-1\right)^2=0\\\left(x-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-y-1=0\\x=1\end{cases}}\)\(\Leftrightarrow x=y=1\)
Bài 1.
a) A = -x2 - 4x - 2 = -( x2 + 4x + 4 ) + 2 = -( x + 2 )2 + 2
\(-\left(x+2\right)^2\le0\forall x\Rightarrow-\left(x+2\right)^2+2\le2\)
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MaxA = 2 <=> x = -2
b) B = -2x2 - 3x + 5 = -2( x2 + 3/2x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8
\(-2\left(x+\frac{3}{4}\right)^2\le0\forall x\Rightarrow-2\left(x+\frac{3}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)
Đẳng thức xảy ra <=> x + 3/4 = 0 => x = -3/4
=> MaxB = 49/8 <=> x = -3/4
c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9
\(-\left(x+1\right)^2\le0\forall x\Rightarrow-\left(x+1\right)^2+9\le9\)
Đẳng thức xảy ra <=> x + 1 = 0 => x = -1
=> MaxC = 9 <=> x = -1
d) D = -8x2 + 4xy - y2 + 3 = -( 4x2 - 4xy + y2 ) - 4x2 + 3 = -( 2x - y )2 - 4x2 + 3
\(\hept{\begin{cases}-\left(2x-y\right)^2\le0\forall x,y\\-4x^2\le0\forall x\end{cases}}\Rightarrow-\left(2x-y\right)^2-4x^2+3\le3\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x-y=0\\4x=0\end{cases}}\Rightarrow x=y=0\)
=> MaxD = 3 <=> x = y = 0
Bài 2.
a) A = x2 - 2x + 5 = ( x2 - 2x + 1 ) + 4 = ( x - 1 )2 + 4
\(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+4\ge4\)
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinA = 4 <=> x = 1
b) B = x2 - x + 1 = ( x2 - 2.1/2.x + 1/4 ) + 3/4 = ( x - 1/2 )2 + 3/4
\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
=> MinB = 3/4 <=> x = 1/2
c) C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
C = [( x - 1 )( x + 6 )][( x + 2 )( x + 3)]
C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]
C = [ ( x2 + 5x ) - 6 ][ ( x2 + 5x ) + 6 ]
C = ( x2 + 5x )2 - 36
\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)
Đẳng thức xảy ra <=> \(x^2+5x=0\Rightarrow x\left(x+5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
=> MinC = -36 <=> x = 0 hoặc x = -5
d) D = x2 + 5y2 - 2xy + 4y + 3
D = ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2
D = ( x - y )2 + ( 2y + 1 )2 + 2
\(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x,y\\\left(2y+1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)
=> MinD = 2 <=> x = y = -1/2
Lời giải:
$A=(x^2+4y^2+4xy)+x^2+5-8x-12y$
$=(x+2y)^2-6(x+2y)+x^2+5-2x$
$=(x+2y)^2-6(x+2y)+9+(x^2-2x+1)-5$
$=(x+2y-3)^2+(x-1)^2-5\geq 0+0-5=-5$
Vậy $A_{\min}=-5$. Giá trị này đạt được khi $x+2y-3=x-1=0$
$\Leftrightarrow x=1; y=1$