K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\left|3x-15\right|+\left|29+3x\right|\)

\(\Leftrightarrow A>=\left|3x-15-29-3x\right|=44\)

Dấu '=' xảy ra khi 3x+29>=0 và 3x-15<=0

=>-29/3<=x<=5

b: \(B=\left|4x-5\right|+\left|4x+83\right|>=\left|4x-5-4x-83\right|=88\)

Dấu '=' xảy ra khi 4x+83>=0 và 4x-5<=0

=>-83/4<=x<=5/4

3 tháng 5 2021

\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)

Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2 

\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)

\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)

\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6 

3 tháng 5 2021

\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)

\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2 

\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)

\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4 

16 tháng 8 2020

a.

+) Với x lớn hơn hoặc bằng 0

\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x+3+2x\)

\(=\left(2020+3\right)-\left(2x-2x\right)=2023\)

Vậy A có một giá trị duy nhất là 2023 với mọi x lớn hơn hoặc bằng 0

+) Với x < - 1

\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x-\left(3+2x\right)\)

\(=2020-2x-3-2x=2017-4x\ge2017\)

Dấu "=" xảy ra \(\Leftrightarrow4x=0\Leftrightarrow x=0\left(ktm\right)\)

+) Với x = - 1

\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2\left(-1\right)+\left|3+2\left(-1\right)\right|\)

\(=2020+2+1=2023\left(tm\right)\)

Vậy A nhỏ nhất và có một giá trị duy nhất là 2023 \(\Leftrightarrow x\ge-1\)

6 tháng 4 2022

ta có \(\dfrac{5-3x}{4x-8}=\dfrac{-\dfrac{3}{4}\left(4x-8\right)-1}{4x-8}=-\dfrac{3}{4}-\dfrac{1}{4x-8}\)

x ∈ Z, x ≠ 2 nên 4x-8≠0

Mà \(\dfrac{1}{4x-8}< 1\Leftrightarrow-\dfrac{1}{4x-8}>-1\)

\(\Rightarrow E=-\dfrac{3}{4}-1=-\dfrac{7}{4}\)

 

21 tháng 9 2017

a) A = 2.|3x-2|-1

Ta có: 2.|3x-2| \(\ge\)0.

Dấu "=" xảy ra khi 3x-2=0

=> 3x = 2

=> x = 2/3.

Vậy GTNN của A là -1 khi x = 2/3.

b) B = 5.|1-4x|-1

Ta có: 5.|1-4x|\(\ge\)0.

Dấu "=" xảy ra khi 1-4x=0

=>4x=1

=>x=1/4.

Vậy AMin=-1 khi x = 1/4.

c) C = x2+3.|y-2|-1

Ta có: x2\(\ge\)0; 3.|y-2|\(\ge\)0.

Dấu "=" xảy ra khi x = 0 và y-2=0

=> x = 0 và y = 2.

Vậy CMin=-1 khi x = 0, y = 2.

d) D = x + |x|

Ta có : |x| \(\ge\)0

Dấu "=" xảy ra khi x=0.

Vậy DMin = 0 khi x = 0.

16 tháng 2 2020

Lê Quang Phúc, bạn làm câu a,b,c đúng rồi nhưng câu d chưa đúng nhé!! 😊

d, Với x>0 thì D=x+x=2x>0                  (1)

    Với x< hoặc = 0 thì D=x-x=0           (2)

Từ (1) và (2) suy ra: 

GTNN của D bằng 0 khi và chỉ khi x < hoặc = 0