Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)
\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)
\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)
\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)
Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình
2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)
\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)
Vì \(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)
\(\Rightarrow x=3\)
b)\(\sqrt{25x^2}=19\)
\(\Leftrightarrow5x=19\)
\(\Leftrightarrow x=\dfrac{19}{5}\)
c)\(\sqrt{x-7}+3=0\)
\(\Leftrightarrow\sqrt{x-7}=-3\)
\(\Leftrightarrow x-7=9\)
\(\Leftrightarrow x=16\)
a) \(A=5+\sqrt{-4x^2-4x}\)
\(A==5+\sqrt{-4x\left(x+1\right)}\)
Có: \(-4x\left(x+1\right)\le0\)
\(\Rightarrow\sqrt{-4x\left(x+1\right)}=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy: \(Max_A=5\) tại \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(B=\sqrt{x-2}+\sqrt{4-x}\)
ĐKXĐ: \(\hept{\begin{cases}x\ge2\\x\le4\end{cases}}\Rightarrow x\in\left\{2;3;4\right\}\)
Thay \(x=2\Rightarrow\sqrt{2-2}+\sqrt{4-2}=\sqrt{2}\)
Thay \(x=3\Rightarrow\sqrt{3-1}+\sqrt{4-3}=2\)
Thay \(x=4\Rightarrow\sqrt{4-2}+\sqrt{4-4}=\sqrt{2}\)
Vậy: \(Max_B=2\) tại \(x=3\)
Bài 2:
a)\(A=\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
\(\ge x-1+0+3-x=2\)
Dấu = khi \(\hept{\begin{cases}x-1\ge0\\x-2=0\\x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x=2\\x\le3\end{cases}}\Leftrightarrow x=2\)
Vậy MinA=2 khi x=2
1.
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$A=|x+2|+|x+3|=|x+2|+|-x-3|\geq |x+2-x-3|=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $(x+2)(-x-3)\geq 0$
$\Leftrightarrow (x+2)(x+3)\leq 0$
$\Leftrightarrow -3\leq x\leq -2$
2. ĐKXĐ: $x\geq 1$
\(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\sqrt{(x-1)+2\sqrt{x-1}+1}+\sqrt{(x-1)-2\sqrt{x-1}+1}\)
\(=\sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}=|\sqrt{x-1}+1|+|\sqrt{x-1}-1|\)
\(=|\sqrt{x-1}+1|+|1-\sqrt{x-1}|\geq |\sqrt{x-1}+1+1-\sqrt{x-1}|=2\)
Vậy gtnn của $B$ là $2$. Giá trị này đạt tại $(\sqrt{x-1}+1)(1-\sqrt{x-1})\geq 0$
$\Leftrightarrow 1-\sqrt{x-1}\geq 0$
$\Leftrightarrow 0\leq x\leq 2$