K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

Bài này mik ko biết nhưng bạn có thể vào câu hỏi tương tư

14 tháng 9 2017

gtnn là 1 khi \(2x+\frac{1}{3}\)=0

=>x=\(-\)\(\frac{1}{6}\)

2 tháng 1 2019

1) \(A=\left(2x^2+1\right)^4-3\ge0-3=-3\) (do \(\left(2x^2+1\right)^4\ge0\forall x\))

Dấu "=" xảy ra \(\Leftrightarrow\left(2x^2+1\right)=0\Leftrightarrow2x^2=-1\Leftrightarrow x^2=-\frac{1}{2}\) (vô lí)

Vậy đề sai ~v  (hay là tui làm sai ta)

2 tháng 1 2019

1b) \(B=3\left|1-2x\right|-5\ge0-5=-5\)  (do \(\left|1-2x\right|\ge0\forall x\))

Dấu "=" xảy ra khi \(\left|1-2x\right|=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

Vậy \(B_{min}=-5\Leftrightarrow x=\frac{1}{2}\)

10 tháng 12 2017

các bạn thông cảm mình ko biết viết dấu giá trị tuyệt đối ở trong này 

15 tháng 9 2016

T/C của gttđ là >= 0 nên 

a) GTNN = -4

b) GTLN = 2

c) GTNN = 2

4 tháng 1 2016

bữa nay thi vong trường mình đã làm bài đó rồi bằng-7 chắc 100 phầm trăm

 

4 tháng 1 2016

Giá trị nhỏ nhất của A là -7 tại X=0

21 tháng 8 2018

\(A=\left|x-5\right|+\left|x+3\right|\ge\left|5-x+x+3\right|=8\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-5\ge0\\x+3\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge5\\x\ge-3\end{cases}\Rightarrow}x\ge5}\)

Vậy,..........

18 tháng 9 2018

1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)

Dấu "=" xảy ra khi x=y=1

Máy mình bị lỗi nên ko nhìn được các bài tiếp theo

Chúc bạn học tốt :)

18 tháng 9 2018

Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2    

Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0

18 tháng 7 2016

\(A=-\left|2x-1\right|\)

Do \(-\left|2x-1\right|\le0\)

\(\Rightarrow Max\)\(A=-0=0\)

Vậy Max A=0 khi x=\(\frac{1}{2}\)

\(B=3-\left|2x-1\right|\)

Do \(\left|2x-1\right|\ge0\)

\(\Rightarrow Max\)\(B=3-0=3\)

Vậy \(Max\)\(B=3\)\(Khi\)\(x=\frac{1}{2}\)

\(C=-\left|2x-1\right|+1\)

Do \(-\left|2x-1\right|\le0\)

\(\Rightarrow Max\)\(C=0+1=1\)

Vậy \(Max\)\(C=1\)\(khi\)\(x=\frac{1}{2}\)

4 tháng 7 2018

Ta có: \(x^2\ge0;3\left|y-2\right|\ge0\)

\(\Rightarrow x^2+3\left|y-2\right|\ge0\)

\(\Rightarrow x^2+3\left|y-2\right|-1\ge-1\)

\(\Rightarrow A\ge-1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2=0\\3\left|y-2\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}}\)

Vậy GTNN của A = -1 khi x = 0 và y = 2

4 tháng 7 2018

\(A=x^2+3\left|y-2\right|-1\)

Có \(x^2\ge0;3\left|y-2\right|\ge0\)

\(\Rightarrow A\ge0+0-1=-1\)

Dấu '=" xảy ra khi MinA=-1\(\Leftrightarrow x=0;y=2\)

30 tháng 9 2019

Ta cố bdt \(|a|+|b|\ge|a+b|\), dễ dàng chứng mình bằng bình phương 2 vế. Dấu = sảy ra <=>IaI.IbI=a.b <=> a.b>=0

áp dụng vào từng câu

a)A=Ix+1I+Ix+2I+Ix+3I+I-x-4I+I-x-5I  ( vì Ix+4I=I-x=4I, Ix+5I=I-x-5I

A>=I(x+1)+(-x-5)I+I(x+2)+(-x-4)I +Ix+3I=4+2+Ix+3I=6+Ix+3I>=6

Dấu bằng khi (x+1)(-x-5)>=0;(x+2)(-x-4)>=0;Ix+3I=0 =>x=-3

b) LÀm tương tự MinB=18

Dấu = khi (2x+1)(-2x-11)>=0;(2x+3)(-2x-9)>=0;(2x+5)(-2x-7)>=0 <=>-7/2<=x<=-5/2