Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tim gia tri nho nhat cua bieu thuc : \(\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
Để mình giúp nha
\(A=|x-2013|+|x-2014|+|x-2015|\)
\(=|x-2013|+|2014-x|+2015-x|\)
\(\ge|x-2013+2015-x|+|2014-x|\)
\(\ge2+|2014-x|=2\)
Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}\left(x-2013\right)\left(2015-x\right)\ge0\\|2014-x|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)
Ta có: |x−2013|+|x−2014|+|x−2015|=|x−2013|+|x−2014|+|2015-x|=(|x−2013|+|2015-x|)+|x−2014|
Vì |x−2013|+|2015-x|\(\ge\)|x−2013+2015-x|=2
Dấu"=" xảy ra khi (x-2013)(2015-x)\(\ge0\Rightarrow2013\le x\le2015\)
|x−2014|\(\ge0\)
Dấu"=" xảy ra khi x-2014=0\(\Rightarrow x=2014\)
|x−2013|+|x−2014|+|x−2015|\(\ge\)2
Dấu"=" xảy ra khi\(\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)
Vậy GTNN của |x−2013|+|x−2014|+|x−2015|=2 đạt được khi x=2014
Để A đạt GTNN
=> \(\frac{1}{3,5-\left|x+5\right|}\)đạt GTNN
=> 3,5 - |x + 5| đạt GTLN (ĐK 3,5 - |x + 5| \(\ne\)0)
mà \(\left|x+5\right|\ge0\forall x\Rightarrow3,5-\left|x+5\right|\le3,5\)
Dấu "=" xảy ra <=> x + 5 = 0 => x = -5
=> 3,5 - |x + 5| đạt GTLN là 3,5 <=> x = -5
Thay x vào A
=> GTNN của A LÀ 1/3,5 <=> x = -5
a) \(A=\left|x-2016\right|+2017\)
Vì: \(\left|x-2016\right|\ge0\)
=> \(\left|x-2016\right|+2017\ge2017\)
Vậy GTNN của A lòa 2017 khi\(x-2016=0\Leftrightarrow x=2016\)
b) \(\left|x-2016\right|+\left|y-2017\right|+2018\)
Vì: \(\begin{cases}\left|x-2016\right|\ge0\\\left|x-2017\right|\ge0\end{cases}\)\(\Leftrightarrow\left|x-2016\right|+\left|x-2017\right|\ge0\)
=> \(\left|x-2016\right|+\left|y-2017\right|+2018\ge2018\)
Vậy GTNN của B là 2018 khi \(\begin{cases}x-2016=0\\y-2017=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2016\\y=2017\end{cases}\)
a)Ta có: |x-2016|\(\ge\) 0
=>|x-2016|+2017 \(\ge\) 2017
hay A \(\ge\) 2017
GTNN của A = 2017 khi |x-2016|=0
=>x-2016=0
=>x=0+2016
=>x=2016
Vậy GTNN của A=2017 khi x=2016
b)Tương tự câu a)
a) Ta có: |x-2016| luôn lớn hơn hoặc bằng 0
=>|x-2016| + 2017 luôn lớn hơn hoặc bằng 2017
Dấu bằng xảy ra khi |x-2016|=0
=> x-2016=0
=>x=2016
vậy GTNN của A bằng 2017 khi x=2016
b)Ta có |x-2016| + |y-2017| luôn lớn hơn hoặc bằng 0
=>|x-2016|+|y-2-17| + 2018 luôn lớn hơn hoặc bằng 2018
Dấu bằng xảy ra khi
\(\left[\begin{array}{nghiempt}x-1016=0\\y-1017=0\end{cases}=\left[\begin{array}{nghiempt}x=2016\\y=2017\end{array}\right.}\)
Do Ix-2015I; Ix-2016I; Ix-2017I lớn hơn hoặc bằng không với mọi x
Mà P bé nhất khi Ix-2015I + Ix-2016I + Ix-2017I bé nhất
TH1 khi Ix - 2015I = 0 => x =2015 => I 2015 - 2015I + I2015 - 2016I +I2015 - 2017I = 0 + 1 + 2 = 3 (đặt là 1)
TH2 khi Ix-2016I = 0 => x= 2016 => I2016 - 2015I + I2016 - 2016I + I 2016 - 2017I = 1 + 0 + 1 = 2 ( đặt là 2)
TH3 khi Ix-2017I = 0 => x= 2017 => I2017- 2015I + I 2017 - 2016I +I 2017 - 2017I = 2+1 + 0 = 3( đặt là 3)
Từ 1, 2, 3 => Giá trị bé nhất của P là 2 khi x=2016
Do |x-2015| ; |x-2016| ; |x-2017| lớn hơn hoặc bằng 0 với mọi x
Mà P bé nhất khi |x-2015| + |x-2016| + |x-2017| bé nhất
TH1: Khi |x-2015| = 0 suy ra x = 2015 suy ra | 2015 - 2015 | + | 2015 - 2016 | + | 2015 - 2017 | = 0 + 1 + 2 = 3 ( 1 )
TH2: Khi |x-2016| = 0 suy ra x = 2016 suy ra | 2016 - 2015 | + | 2016 - 2016 | + | 2016 - 2017 | = 1 + 0 + 1 = 2 ( 2 )
TH3: Khi |x-2017| = 0 suy ra x = 2017 suy ra | 2017 - 2015 | + | 2017 - 2016 | + | 2017 - 2017 | = 2 + 1 + 0 = 3 ( 3 )
Từ ( 1 ) ; ( 2) ; ( 3 ) suy ra giá trị nhỏ nhất của P là 2 khi x = 2016
a)A=|\(x+5\)|\(+2-x\)
=> \(x+5=0\)
\(2-x=0\)
=>\(x=-5\)
\(x=2\)
Gía trị nhỏ nhất của A là :
|-5+5|=2-2
=|0|=0
=>=0
Vậy .....................
\(\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(=\left|x-2014\right|+\left|2016-x\right|+\left|2015-x\right|\)
\(\ge\left|x-2014+2016-x\right|+\left|2015-x\right|\)
\(=2+\left|2015-x\right|\ge2\)
Dấu bằng xảy ra khi: \(\hept{\begin{cases}\left(x-2014\right)\left(2016-x\right)\ge0\\2015-x=0\end{cases}}\Rightarrow x=2015\)
Ta có: \(\left|2014-x\right|+\left|2016-x\right|=\left|x-2014\right|+\left|2016-x\right|\ge\left|x-2014+2016-x\right|=2\)
Dấu "=" xảy ra <=> \(\left(2014-x\right)\left(2016-x\right)\ge0\)
<=> \(2014\le x\le2016\) (1)
Mặt khác \(\left|2015-x\right|\ge0\). Dấu "=" xảy ra <=> 2015-x = 0 <=> x = 2015 (2)
Ta thấy điều kiện (2) và (1) thỏa nhau
Nên kết hợp cả hai ta suy ra: GTNN của |2014-x|+|2015-x|+|2016-x| bằng 2 khi x = 2015