Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x - 1 )2018 + (y - 2 )2020+(z-3)2022=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
\(A=\dfrac{1}{9}\left(-x\right)^{2021}y^2z^3=\dfrac{1}{3}\left(-1\right)^{2021}.2^2.3^3=\dfrac{1}{3}.\left(-1\right).4.27=-36\)
a)x+y+xy=2
=> x+xy+y=2
=>x(y+1)+y=2
=>x(y+1)+y+1=3
=>x(y+1)+(y+1)=3
=>(y+1)(x+1)=3
Đến đây thì dễ rồi, bạn tự tìm nốt nha
b) \(\frac{27-2x}{12-x}=\frac{24-2x+3}{12-x}=\frac{2.\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)
Để Q lớn nhất thì \(\frac{3}{12-x}\) lớn nhất
Với x>12 thì \(\frac{3}{12-x}< 0\)
Với x<12 thì \(\frac{3}{12-x}.>0\)
Phân số \(\frac{3}{12-x}\) với x<12 có tử và mẫu đều dương, tử ko đổi nên mẫu phải nhỏ nhất
=>12-x=1
=>x=11
ta có x^6 lớn hơn hoặc bằng 0 =>x^y lớn hơn hoặc bằng 0. Mà y là số lẻ => y lớn hơn hoặc bằng 0.
Mặt khác: x^y=x^6=> x=6 ( ko thỏa mãn y lẻ)
Vậy có 0 số nguyên x thỏa mãn
ta có: x/2 + 3/y = 5/4
=> 5/4 - x/2 = 3/y
=> 5/4 - 2x/4 = 3/y
=> (5 -2x)/4 = 3/y
=> y(5 - 2x) = 12
Suy ra: y; 5-2x thuộc ước của 12 = 1; -1; 2; -2; 3;-3;4;-4;6;-6;12;-12 (1)
Vì x, y là số nguyên dương nên 2x>0 => 5 - 2x>4
Nên từ (1) suy ra 5-2x = 6;12
Ta có bảng:
5-2x | 6 | 12 |
y | 2 | 1 |
2x | -1 | -7 |
x | không có | không có |
Vậy không có giá trị để x,y thỏa mãn đề bài
Ta có : \(\frac{x}{2}+\frac{3}{y}=\frac{5}{4}\)
\(\Rightarrow\frac{5}{4}-\frac{x}{2}=\frac{3}{y}\)
\(\Rightarrow\frac{5}{4}-\frac{2x}{4}=\frac{3}{y}\)
\(\Rightarrow\frac{5-2x}{4}=\frac{3}{y}\)
\(\Rightarrow y\left(5-2x\right)=12\)
\(\Rightarrow\) y = 5 - 2x \(\in\) Ư(12) = { 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 4 ; -4 ; 6 ; -6 ; 12 ; -12 }
Vì x ; y là số nguyên dương nên 2x > 0 \(\rightarrow\) 5 - 2x > 4
\(\Rightarrow\) 5 - 2x = 6 ; 12 nên ta có bảng sau :
5 - 2x | 6 | 12 |
y | 2 | 1 |
2x | -1 | -7 |
x | không có | không có |
Vậy không có x ; y để thỏa mãn đề bài .
Vì x,y,z nguyên dương
Không mất tính toongr quát. Giả sử \(1\le x\le y\le z\)
Theo bài ra ta có: 2(x+y+z)=xyz
\(\Rightarrow\frac{x+y+z}{xyz}=\frac{1}{2}\)\(\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{x^2}\ge\frac{1}{2}\)
\(\Rightarrow\frac{3}{x^2}\ge\frac{1}{2}\)
\(\Rightarrow x^2\le6\)
\(\Rightarrow x=\left\{1;2\right\}\)(vì x nguyên dương)
* TH1: x=1 Ta có:
2(1+y+z)=yz
=>2+2y+2z-yz=0
=> (2y-yz)+(-4+2z)=-6
=>y(2-z)-2(2-z)=-6
=>(y-2)(z-2)=6
Vì y,z là số nguyên dương \(\left(y-2\right)\left(z-2\right)\inƯ\left(6\right)=\left\{1;2;3;6\right\}\)
Lập bảng giá trị:
y-2 | 1 | 2 | 3 | 6 |
y | 3 | 4 | 5 | 8 |
z-2 | 6 | 3 | 2 | 1 |
z | 8 | 5 | 4 | 3 |
*TH2: x=2 bạn làm tương tự