K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}+\dfrac{4x^2}{x^2-9}\right):\dfrac{2x+1-x-3}{x+3}\)

\(=\dfrac{-x^2-6x-9+x^2-6x+9+4x^2}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x-2}\)

\(=\dfrac{4x^2-12x}{x-3}\cdot\dfrac{1}{x-2}=\dfrac{4x}{x-2}\)

b: \(2x^2-5x+2=0\)

=>(x-2)(2x-1)=0

=>x=1/2

Thay x=1/2 vào P, ta được:

\(P=\left(4\cdot\dfrac{1}{2}\right):\left(\dfrac{1}{2}-2\right)=2:\dfrac{-3}{2}=\dfrac{-4}{3}\)

 

30 tháng 11 2022

Bài 3:

a: =>3x^2-6x-x-3x^2=14

=>-7x=14

=>x=-2

b: \(\Leftrightarrow2x^2+10x-x-5-2x^2-9x-x-4.5=3.5\)

=>-x-9,5=3,5

=>-x=12

=>x=-12

c: =>\(3x-3x^2+9x=36\)

=>-3x^2+12x-36=0

=>x^2-6x+12=0(loại)

d: \(\Leftrightarrow3x^2-3x+x-1+4x-3x^2=5\)

=>2x=6

=>x=3

15 tháng 1 2023

loading...  c/ 

Ta có : B=2=>6/2-2x

<=>6=4-4x

<=>6-4=-4x

<=>-4x=2

<=>x=2/-4=-1/2

d/ĐKXĐ:2-2x≠0
<=>2(1-x)≠0<=>-2(x-1)≠0

<=>x≠1

Để giá trị của biểu thức B nguyên thì 2-2x là Ư(6)

=>2-2x ∈ Ư(6)={±1;±2;±3;±6) Nếu 2-2x=1=> -2x=-1=>x=1/2( thoả mãng)

Rồi còn nhiêu bạn tự xét trường hợp y trang cách làm ở trênn nnhan :;)).À sẽ có mấy cái trường hợp nó giống ĐKXĐ thì bạn ghi trong ngoặc ko thoã mãn nhan.

11 tháng 2 2018

\(\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)

\(\left(\frac{x^2-x+1}{x^3+1}-\frac{3}{x^3+1}+\frac{3\left(x+1\right)}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)

\(\left(\frac{x^2-x+1-3+3x+3}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)

tới đây bạn biến đổi tiếp, gõ = cái này lâu quá, gõ mathtype nhanh hơn

11 tháng 2 2018

cảm ơn cậu giúp mk câu c với ạ

9 tháng 6 2021

a)Đk:\(\left\{{}\begin{matrix}x^2-4\ne0\\2x^2-x^3\ne0\\x^2-3x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(x+2\right)\ne0\\x^2\left(2-x\right)\ne0\\x\left(x-3\right)\ne0\end{matrix}\right.\)\(\Leftrightarrow x\ne\left\{2;-2;0;3\right\}\)

b)\(P=\left[\dfrac{\left(2+x\right)^2}{\left(2+x\right)\left(2-x\right)}+\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{\left(2-x\right)^2}{\left(2+x\right)\left(2-x\right)}\right]:\dfrac{x\left(x-3\right)}{x^2\left(2-x\right)}\)

\(=\dfrac{\left(2+x\right)^2-4x^2-\left(2-x\right)^2}{\left(2+x\right)\left(2-x\right)}.\dfrac{x^2\left(2-x\right)}{x\left(x-3\right)}\)

\(=\dfrac{4+4x+x^2-4x^2-4+4x-x^2}{\left(2+x\right)\left(2-x\right)}.\dfrac{x\left(2-x\right)}{x-3}\)

\(=\dfrac{x\left(8x-4x^2\right)}{\left(2+x\right)\left(x-3\right)}\) (sai đề chỗ nào ko em)

c)\(\left|x-5\right|=2\Leftrightarrow\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\x=3\left(ktm\right)\end{matrix}\right.\)

Thay x=7 vào bt P ta được: \(P=\dfrac{7\left(8.7-4.7^2\right)}{\left(2+7\right)\left(7-3\right)}=-\dfrac{245}{9}\)

18 tháng 11 2016

Ta có:(12x^3-7x^2-14x+14): (4x-5)= (3x^2+2x-1)+9: (4x-5). Để (12x^3-7x^2-14x+14)chia hết cho (4x-5) thì 9 phải chia hết cho(4x-5).=>4x-5 thuộc vào ước của 9=+-1;+-3;+-9.xét từng giá trị để tìm x thỏa mãn khi x<0. Sau đó kết luận.

17 tháng 12 2016

A=12x^3-7x^2-14x+14

PT: (\(-7x^2-14x+14\))+12\(x^3\)

-7(x^2+2x+1)+12x^3+21 do(14=-7+21)

-7\(\left(x+1\right)^2\)+12x^3+21

-7\(\left(x+1\right)^2\)+12(x^3+1)+9

=>x=-1 để A đạt GTNN

 

 

 

 

 

 

 

AH
Akai Haruma
Giáo viên
17 tháng 12 2022

Lời giải:

$M=\frac{2x^2-3x+3}{x-2}=\frac{(2x^2-4x)+(x-2)+5}{x-2}$

$=\frac{2x(x-2)+(x-2)+5}{x-2}=2x+1+\frac{5}{x-2}$

Với $x$ nguyên, để $M$ nguyên thì $\frac{5}{x-2}$ nguyên

$\Rightarrow x-2$ là ước của $5$ (do $x$ nguyên)

$\Rightarrow x-2\in\left\{5;-5;1;-1\right\}$

$\Rightarrow x\in\left\{7; -3; 3; 1\right\}$

18 tháng 12 2022

cảm ơn cô

9 tháng 6 2021

a, ĐKXĐ: \(x\ne1;x\ne-1\)

b, Với \(x\ne1;x\ne-1\)

\(B=\left[\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\left[\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\dfrac{5}{x^2-1}\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =4\)

=> ĐPCM