K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2019

\(P=\frac{2x^2-x+4x+3}{2x-1}=\frac{x\left(2x-1\right)+2\left(2x-1\right)+5}{2x-1}\)

\(=x+2+\frac{5}{2x-1}\).Do x nguyên nên x + 2 nguyên.

Để P nguyên thì 2x - 1 thuộc Ư(5).

Đến đây dễ rồi nhé.

19 tháng 6 2019

                                                                       Bài giải

                  Ta có : \(P=\frac{2x^2+3x+3}{2x-1}=\frac{x\left(2x-1\right)+x+3x+3}{2x-1}=\frac{x\left(2x-1\right)+4x+3}{2x-1}\)

\(=\frac{x\left(2x-1\right)+2\left(2x-1\right)+2+3}{2x-1}=\frac{\left(x+2\right)\left(2x-1\right)+5}{2x-1}=x+2+\frac{5}{2x-1}\)

Để \(P=\frac{2x^2+3x+3}{2x-1}\)nguyên  \(\Rightarrow\text{ }\frac{5}{2x-1}\) nguyên \(\Rightarrow\text{ }5\text{ }⋮\text{ }2x-1\)

                                                                                                 \(\Leftrightarrow\text{ }2x-1\inƯ\left(5\right)=\left\{\pm1\text{ ; }\pm5\right\}\)

Ta có bảng :                                  ( Vi không có dấu hoặc 4 cái nên mình lập bảng )

\(2x-1\) \(-1\) \(1\)\(-5\) \(5\)
\(x\) \(0\) \(1\) \(-2\) \(3\)

                  Vậy \(P\) có giá trị nguyên khi \(x\in\left\{0\text{ ; }1\text{ ; }-2\text{ ; }3\right\}\)

2 tháng 8 2017

Để P nguyên => 2x^2 + 3x+3 chia hết cho 2x-1

   2x^2+3x+3 = x(2x-1)+4x+3. Vì x(2x-1)chia hết cho 2x-1 => 4x+3 chia hết cho 2x-1

=> 2(2x-1)+5. Do 2(2x-1) chia hết cho 2x-1 nên 5 chia hết cho 2x-1=> 2x-1 thuộc Ư(5)={+-1;+-5}.ta có bảng sau:

2x-11-15-5
x103-2

Vậy x thuộc{1;0;3;-2}  thì P nguyên
 

20 tháng 11 2017

Gợi ý thôi nhé

a: x^2 - 5x + 8 = x^2 - 3x  - 2x + 6 + 2 = (x-3).(x-2) + 2

=> Phân thức sẽ nguyên khi 2/(x-3) nguyên (Do x-3 nguyên bởi x nguyên)

<=> x-3 thuộc Ư(2) do x nguyên

Các câu khác thì cứ làm sao cho nó thành đa thức như thế

20 tháng 11 2017

thanks nhé!

13 tháng 9 2019

\(P=\frac{2x^2+3x+3}{2x-1}=\frac{\left(2x^2-x\right)+\left(4x-2\right)+5}{2x-1}=x+2+\frac{5}{2x-1}\)

x nguyên do đó x + 2 có giá trị là số nguyên :

Để P có giá trị là số nguyên thì \(\frac{5}{2x-1}\) phải nguyên hay 2x - 1 là ước nguyên của 5  :

\(\Rightarrow\) \(^∗2x-1=1\Rightarrow x=1\)

           \(^∗2x-1=-1\Rightarrow x=0\) 

          \(^∗2x-1=5\Rightarrow x=3\)

            \(^∗2x-1=-5\Rightarrow x=-2\)

Vậy \(x=\left\{1;0;3;-2\right\}\) thì P có giá trị nguyên . Khi đó các giá trị của P là :

\(x=1\Rightarrow P=8\)

\(x=0\Rightarrow P=-3\)

\(x=3\Rightarrow P=6\)

\(x=-2\Rightarrow P=-1\)

Chúc bạn học tốt !!!

13 tháng 9 2019

Để \(\frac{2x^2+3x+3}{2x-1}\)là số nguyên thì \(2x^2+3x+3\)chia hết cho\(2x-1\)

Ta có:\(2x^2+3x+3⋮2x-1\)

          \(2x^2+\left(-x+4x\right)+\left(-2+5\right)\)\(⋮2x-1\)

           \(\left(2x^2-x\right)+\left(4x-2\right)+5\)\(⋮2x-1\)

\([x(2x-1)]+[2(2x-1)]+5⋮2x-1\)

\(x\left(2x-1\right)⋮2x-1\);\(2\left(2x-1\right)⋮2x-1\)

\([x(2x-1)]+[2(2x-1)]+5⋮2x-1\)

nên \(5⋮2x-1\)

hay\(2x-1\inƯ\left(5\right)\)

nên ta có bảng sau:

2x-15-51-1
x3-21

0

\(\Rightarrow x\in\left\{-2,0,1,3\right\}\)

Chúc bạn học tốt nha!!!

20 tháng 2 2020

Ta có

\(\frac{2x^2+3x+3}{2x+1}=x+1+\frac{2}{2x+1}\)

Để \(Q\in z\Rightarrow2⋮2x+1\)

\(\Rightarrow2x+1\inƯ\left(2\right)=\left\{\pm1,\pm2\right\}\)

Vì 2x+1 là số lẻ nên \(2x+1=\pm1\)

\(\orbr{\begin{cases}2x+1=1\\2x+1=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)

Vậy....

20 tháng 2 2020

ta có:

(2x2 + 3x + 3) : (2x + 1) = x + 1 (dư 2)

=> 2x + 1 \(\in\)Ư (2) = \(\left\{\pm1;\pm2\right\}\)

=> 2x + 1 = 1 <=> x = 0

2x + 1 = -1 <=> x = -1

2x + 1 = 2 <=> x = \(\frac{1}{2}\)

2x + 1 = -2 <=> x = \(\frac{-3}{2}\)

22 tháng 2 2019

a, \(A=\frac{4x^2\left(x-2\right)+3\left(x-2\right)}{2x\left(x-2\right)+x-2}\)

\(=\frac{\left(x-2\right)\left(4x^2+3\right)}{\left(x-2\right)\left(2x+1\right)}=\frac{4x^2+3}{2x-1}\left(ĐKXĐ:x\ne2;x\ne-\frac{1}{2}\right)\)

b, \(A\in Z\Leftrightarrow\frac{4x^2+3}{2x-1}\in Z\Leftrightarrow2x+1+\frac{4}{2x-1}\in Z\)

\(\Leftrightarrow\frac{4}{2x-1}\in Z\Leftrightarrow4⋮\left(2x-1\right)\)

\(\Rightarrow2x-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Mà 2x - 1 là số lẻ nên \(2x-1\in\left\{-1;1\right\}\Rightarrow x\in\left\{0;1\right\}\) (thỏa mãn ĐKXĐ)

30 tháng 8 2021

\(\dfrac{2x^3+x^2+2x+2}{2x+1}\left(đk:x\ne-\dfrac{1}{2}\right)=\dfrac{\left(2x+1\right)\left(x^2+1\right)}{2x+1}+\dfrac{1}{2x+1}=x^2+1+\dfrac{1}{2x+1}\)

Do x nguyên nên để biểu thức trên có giá trị nguyên thì :

\(1⋮2x+1\Rightarrow2x+1\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow x\in\left\{0;-1\right\}\)

\(\dfrac{2x^3+x^2+2x+2}{2x+1}\)

\(=\dfrac{2x^3+x^2+2x+1+1}{2x+1}\)

\(=x^2+1+\dfrac{1}{2x+1}\)

Để đó là số nguyên thì \(1⋮2x+1\)

\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow2x\in\left\{0;-2\right\}\)

hay \(x\in\left\{0;-1\right\}\)